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Abstract. Current practice in flood frequency analysis assumes that the stochastic properties of extreme floods follow
that of stationary conditions. As human intervention and anthropogenic climate change influences in hydro-
meteorological variables are becoming evident in some places, there have been suggestions that nonstationary
statistics would be better to represent the stochastic properties of the extreme floods. The probabilistic estimation of
non-stationary models, however, is surrounded with uncertainty related to scarcity of observations and modelling
complexities hence the difficulty to project the future condition. In the face of uncertain future and the subjectivity of
model choices, this study attempts to demonstrate the practical implications of applying a nonstationary model and
compares it with a stationary model in flood risk assessment. A fully integrated framework to simulate decision
makers’ behaviour in flood frequency analysis is thereby developed. The framework is applied to hypothetical flood
risk management decisions and the outcomes are compared with those of known underlying future conditions.
Uncertainty of the economic performance of the risk-based decisions is assessed through Monte Carlo simulations.
Sensitivity of the results is also tested by varying the possible magnitude of future changes. The application provides
quantitative and qualitative comparative results that satisfy a preliminary analysis of whether the nonstationary model
complexity should be applied to improve the economic performance of decisions. Results obtained from the case
study shows that the relative differences of competing models for all considered possible future changes are small,
suggesting that stationary assumptions are preferred to a shift to nonstationary statistics for practical application of
flood risk management. Nevertheless, nonstationary assumption should also be considered during a planning stage in
addition to stationary assumption especially for areas where future change in extreme flows is plausible. Such

comparative evaluations would be of valuable in flood risk management decision-making processes.

1 Introduction

In hydrology and water resources planning, stochastic
methods are routinely applied in the design process.
Conventionally, it is assumed that the extreme
hydrological events are stationary, which means that the
probability distribution of the extremes remains time
invariant over the design life/appraisal period of the
planned structure. The assumption is, however, argued
due to the fact that the extremes hydrological time series
such as extreme precipitation and extreme floods and
drought are driven by a complex interaction of different
factors that inevitably changes over time. For example,
the hydrological cycle of river basins is affected by the
changes in land use from human intervention and
urbanization [1]. In some countries, changes in
acceleration of runoff due to large-scale deforestation has
causes unprecedented event of flooding.

There are also concerns over the effect of atmospheric
circulation systems such as El Nino Southern Oscillation
(ENSO), Pacific Decadal Oscillation (PDO) and North
Atlantic Oscillation (NAO) to the pattern of observed
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extreme precipitation and extreme flood events [e.g. 2, 3].
Increased greenhouse gases in the atmosphere that result
in climate change is another reason for concerns over
changes in extreme hydrological variables that may
effectively result in changes in frequency and magnitude
of extreme floods and drought [4].

The significant impact of the mentioned factors to
streamflow remains inconclusive [5]. Concerns over the
possible nonstationarity and the impact of the
conventional assumption of stationary in the case of
designing flood protection are valid as the design
structure are typically meant to be functional for decades.
There has been a call to identify nonstationary
probabilistic models instead of relying upon the
stationary assumption in practical flood risk management
problems [6]. Yet abandoning stationary probabilistic
model and identifying approaches of nonstationary for
practical use in flood risk management raises challenges
to flood risk analysts and the research community [7, 8].

Concerns over nonstationarity have led many studies
to conduct trend analysis on extreme precipitation and
extreme streamflow observations [9]. A large number of
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studies have also tried to address the changes in flood
frequency by analysing changes over time slices of
climate model-based future projections [e.g. 10, 11]. The
findings from the analysis of change in future flows
projections have been taken as the basis of design and
planning guidelines for flood risk management in
England and Wales [12]. Whereas many studies have
relied on statistical trend tests such as Mann-Kendall
trend test and regression analysis to observe change, there
is a strong emphasis on the needs for developing more
consistent non-stationary frequency analysis methods that
can account transient nature of a changing climate [9].

The existence of nonstationarity in extreme
streamflow is well recognized but research on the
applicability of nonstationary model in flood frequency
analysis is just recently being explored. A number of
studies have conducted comparison analysis of design
estimates from nonstationary probabilistic model to those
of stationary [e.g. 13, 14, 15], which lead to emergence of
diverse opinions. Some indicate preferences on
nonstationary model with some cautions [13, 14, 16],
whilst others discard the notion that stationary is dead
and suggesting that stationary should still remain the
default assumption [15].

In the face of uncertain future and the subjectivity of
model choice, this study attempts to incorporate
nonstationary probabilistic model in a flood risk
management decision analysis framework, in addition to
the conventional stationary model. Different sources of
uncertainty is also addressed and well embedded in the
simulation study. In demonstrating the practical
implications of applying nonstationary model additional
to stationary model, decision makers’ behaviour in
deciding upon an optimal protection level of flood
protection is simulated. Decision uncertainty 1is
represented by incorporating subjectivity of model
choices  between  stationary and  nonstationary
probabilistic models in the decision making process. The
work is implemented to a hypothetical case study where
other components for cost-benefit analysis (i.e. cost and
damage models) are derived accordingly to focus on the
main aims of the study. The results are presented with
explicit uncertainty range and the outcomes of the
sensitivity analysis.

The paper is organised as follows. Section 2 presents
the methodology for the study, which includes an
integrated framework designed to represent decision
makers’ rationale approach in deciding upon an optimal
protection. Results are presented in Section 3 whilst
Section 4 presents the discussion and conclusion.

2 Methodology

A fully integrated framework of decision analysis was
developed for the purpose of the study (Figure 1). The
framework starts with identification of appropriate
nonstationary underlying distribution to simulate long
time series of extreme flow discharges (i.e. 150 years of
annual maxima) (Figure 1 row 1). The simulated flow
discharge is the basis of the exploration study. The first
50 years of the simulated flows is regarded as a

‘historical’ record and used as input in a decision making
process via a risk-based optimisation methodology
(RBOM). The methodology has been implemented in a
number of case study and has been well-accepted in
guiding for an optimal flood protection [e.g. 17, 18, 19].
Further explanation on RBOM is presented in Section
2.2.

Conflicting scenarios of decision makers having
different assumptions about the future underlying
condition (i.e. stationary or nonstationary) are taken into
consideration in the simulation study to allow comparison
of outcomes. The differing option of either using a
stationary or nonstationary model in the flood hazard
characterisation is therefore embedded within the
simulation framework (Figure 1 row 2). It is assumed that
in the case of nonstationary model choice, if an upward
rate of change is detected, then a nonstationary model is
fitted in the RBOM, else stationary model would be used
(Figure 1 row 3) reflecting decision makers’ risk averse
attitude.
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Figure 1: Work flow showing the state of the underlying
distribution, the model choice by decision makers and the final
model used in the risk-based optimization methodology

The performance of decisions made according to the
model choice are inspected by comparing the simulated
decisions (in design discharge unit) with the annual
extreme flows simulated over a specified appraisal
period, in this case referring to the final 100 years annual
maxima. The uncertainty range of the decisions
performance due to the natural variability and decision
uncertainty is captured by repeating the experiment for
multiple simulations through Monte Carlo simulation
methodology. Furthermore, a range of different rate of
change is considered to examine the sensitivity of the
decisions performance to the different plausible future. In
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addition, the economic performance of decisions based
on partial information is compared with that of perfect
information

Section 2.1 presents the characteristics of the
nonstationary underlying distribution used to simulate the
extreme flow series. In Section 2.2, the risk-based
decision making process used to simulate decision
makers behaviour is briefly introduced. The economic
indicators used to evaluate the performance of decisions
are presented in Section 2.3.

2.1 Nonstationary underlying distribution and
simulation of annual maxima flows

In this study, a nonstationary Generalized Extreme
Value (GEV) model with time as covariate was chosen to
simulate the annual maxima flow series. Assuming that
the location parameter is linearly changing over time, the
inverse cumulative distribution function (CDF) of the
nonstationary GEV distribution was used to generate the
flows. The CDF according to Jenkinson [20] can be
written as follows:

Fx(x)=exp{ —[ 1 —x(xu)/a]"™} (1
where,
U = U, + uy(t) ()

u, is the location parameter with time as covariate, o is
the scale parameter and k is the shape parameter. The
location parameter as a linear trend has an initiation of u,
and a rate of change u; over .

The generation of annual maxima flow series from the
function should use realistic parameter values. For this
study, available historical records of the Thames at
Kingston gauging station ranging from 1883 to 2012
were fit into the model using L-moments [21]. Initial
check using the Akaike Information Criterion reveals that
the time series is best represented by a GEV stationary

location parameter outperforming GEV nonstationary
model with log-scale parameter. As the aim of the study
is to evaluate the effects of nonstationary underlying
distribution, estimated parameters of the nonstationary
GEV distribution with linear location parameter were
used to simulate the annual maxima flow series. The
associated parameters estimated by maximum likelihood
estimators are u,= 250.65, u;=0.2,a=95.7, xk =- 0.046

11 different scenarios of future change were
considered to test the sensitivity of outcomes. This is
undertaken by specifying different changes of discharges
per year (u;) over the appraisal period for each scenario,
ranging from 0 to 1.0 m’/s increase of discharge annually.
The scenarios therefore is set to have a different rate of
change by a factor of 0.1 m%s, which means that the
simulated future may have a weaker or greater
representation of change over the future period as
compared to the simulated historical underlying
distribution (1; = 0.2 m*/s/year). Hence future underlying
distribution with u; = 0.2 m*/s/year has the same rate of
change as the simulated historical underlying distribution.
Note that 1.0 m*/s increase per year will cause a 100 m’/s
increase of discharge at the end of the 100 years appraisal
period. This is extremely high and a higher value might
not worth to be considered.

In order to simulate smooth transaction of values over
the ‘historical’ and ‘future’ period, the location
parameter, u, of the ‘future’ underlying distribution at the
transition time (¢ = 51) should be the same as that of
‘historical’ underlying distribution. However due to the
different rate of change between the two periods, u, of
those periods are unique. Table 1 shows the computed ,
associated with an assigned u; for the future period. To
have an insight on the relative variability of the simulated
annual maxima from different u,, tabulations of average
annual maxima flows across 150 years when the
historical u; = 0.2 m’/s/year and the future u; is 0.4 and
0.7 m’/s/year respectively are given in Figure 2.
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Figure 2: Mean annual maxima flows associated with time over historical and future period for 300 simulated flow series.
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85 75 65 55 45
Ui=s51 0.6 0.7 0.8 0.9 1.0
(m3/s/year)
i, (m’/s) 230. | 225. | 220. | 214. | 209.
25 15 05 95 85
Table 1: Summary of the nonstationary GEV location

parameter components for the underlying future ‘design life’
associated to the rate of change at £ = 51.

2.2 Risk-based decision making process

Upon simulating the decision making process, the
study has adopted the well-known risk-based
optimization methodology (RBOM). One of the key
activities in implementing the methodology is the
estimation of residual risk over the design life/appraisal
period of the proposed project in economic term.

Risk can be defined as the product of extreme flows
probability and the consequent damage, whereby the
probability distribution function (PDF) is integrated
together with an appropriate damage function [22]. The
risk estimation following this definition provides the
advantage of integrating both the hazard characteristic
and the economic damage into the evaluation, hence
complementing for a cost-benefit analysis that satisfies a
more practical approach in flood risk decision-making.
Furthermore, the adoption of the risk-based concept
allows a fair comparison of outcomes between stationary
and nonstationary model choices because the risk is
computed based on interval estimates rather than point
estimates.

The PDF is identified through the flood frequency
estimation and available historical extreme flow dataset is
used as input. For this study, it is assumed that the
decision makers adopt the GEV distribution and
maximum likelihood to estimate the distribution
parameters. For the case of preferred stationary model,
the PDF of the GEV distribution f (.) with notations
similar to that of Equation 1 can be denoted as [20]:

Fllu,ax) = Syt ~*g ¥ 3)
where,
rlr —ul 2
Ja-——x k=0
Y=l xw
g w=10

For the cases where nonstationary model choice is
preferred, the location parameter would be changing over
time, hence u follows that of u, as given in Equation 2.
The likelihood function with parameters @ can be denoted
as follows [23] :

£(X:8) = H,ﬁf{xdﬂ] (4)
=1

where m is the sample size compiling observations of x;,
X, ... X, To estimate the parameters, log-likelihood of the
function is maximized with respect to parameter vector
by numerical solutions. The statistical model fitting is
programmed using an inbuilt ‘extRemes’ toolkit [24] in R
software.

u, (m’/s) | 260. | 255. | 250. | 245. | 240. 235.

////

A simplified damage function in flood impact
assessment often represented as either linear, quadratic or
square root function [25]. This study takes the damage
function as a square root function. The damage functions
are separated into three scenarios. No damage scenario (g
< g, or ¢ < §), damaging flood scenario conditioned to
allocated protection design (¢ > §) and damaging flood
scenario conditioned to without project (g > g,), where §
is the protection design and g, is the status quo discharge
level of no damage if flow discharge is equal or below
the level. Constant a and a stage-discharge function /,.)
were used to obtain realistic values of flood damages.

U,fm"hd = U,q Zgporg = E?‘
oS
a(halg)), .forha=0g=§ (5

a(ha(@)),

Dr{q:l =
“.forhy 2 0.9 > g,

The function has been derived according to a hypothetical
case study in Balqis and Hall [26] and is adopted for this
study.

Combining the PDF and damage function, the risk
function R, in annual economic term can be estimated by
solving

i

R.= [ p@)D@dg ©)
The § subscript t
represents the possible changes in time, in this case in
yearly time scale. The lower and upper limit of
integration is in the unit of flow discharge (i.e. m%/s). It is
important to note that the integration is to be numerically
solved, hence an infinite upper limit if exists from an
unbounded PDF will be numerically mapped onto an
appropriate finite interval with infinity as the limit.

The decision-making process through the RBOM
follows a framework of cost-benefit analysis. However,
instead of having the optimal protection by identifying
the minimum net present value (NPV), the RBOM
identifies the minimum of total present value cost
(TPVC) for the optimal protection. Through the RBOM,
datasets of investment cost and residual risk posed by a
range of possible protection design are incorporated into
the assessment for identification of the minimum TPVC.

The project cost function C, is taken as a power
function given by

0, forh, —hg =10

Cla) = {ﬂ{h (@) — hg(a2))°. forhe —hg %0 (7)
The cost is determined by the height of the flood defence
crest level from the river base (4.) and the status quo
threshold level (h,), which is triggered by § and g,
respectively. To have realistic values of investment costs,
A and B constants are considered. Similar to the damage
function, the cost function that has been derived in Balgis
and Hall [26] is adopted for this study.

By solving the residual risk function and the cost
function for each of the protection design considered, the
TPVC can be calculated by discounting the total costs
over the appraisal period. The optimal protection design
is ultimately the minimum value of the TPVC of the
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considered range of protection design that can be denoted
as an objective function of an optimization procedure as
follows:

Mepr

1
mﬁin TPVC = Z m{ﬂf{‘ﬂ +C.8)  ©®
t=0

where r is the discount rate and ng, is the total appraisal
years. The discount rate is taken as 3.5% following the
standard rate as suggested in the treasury [27].

The cost and damage functions associated with the
flood protection measures and the flood risk system
should be derived based on different types of contributing
costs and spatial distribution of elements at risk.
However, the present study focuses on the sensitivity of
the results, hence the absolute values of the investment
cost and flood damage will be arbitrary from the
representative functions.

2.3 Economic evaluation of decisions

performance

The effects of the stationary and nonstationary model
choices to the decisions’ economic performance were
evaluated in two ways; (1) through Monte Carlo
simulation methodology in capturing the uncertainty
range of outcomes, and (2) through the use of perfect
information about the simulated future to obtain the
expected value of the decisions performance. This is to
allow comparisons between the results from the Monte
Carlo simulation and the results from the first-order
analysis.

Section 2.1.1 presents the way the economic
performance is quantified using the generated flows over
the appraisal period, whilst Section 2.1.2 presents the
way the economic performance of decisions are
quantified using the PDF of the underlying distribution of
the appraisal period.

2.3.1 Quantification based on annual maxima
simulation

After the decision-making process has been
simulated, it is assumed that the estimated optimal
protection is followed and constructed accordingly. The
net present value (NPV) is adopted in testing the
economic performance of the protection design
associated with decision makers’ model choice, the
underlying ‘historical’ distribution and the underlying
‘future’ distribution. The two important components for
the NPV quantification are the streams of benefit and the
investment costs of the project as denoted below

Mgy

1
NPV = Zm [(B())-c@] ©

where,

B.(g) = D(g > §) — D;(q > q,) (10)

The benefit associated with the decision makers’
previous decision is quantified using pair-wise
comparison of each of the simulated ‘future’ annual
maxima flows (q) of 100 years appraisal period with the
protection threshold. For scenario of with-protection,
flows that exceed the protection design will contribute to
flood damage for that particular year, whilst for scenario
of do-nothing, flood damage would be calculated when
the simulated flows exceeding the existing flood damage
threshold ¢,. The benefit of having the protection design
is then calculated by taking the difference between the
damage of with-project and the damage of do-nothing
condition.

Note that the way the NPV is computed as previously
mentioned takes into account the annual maxima flow
series simulated for the future. Because the study
implements multiple simulations from the same
underlying distribution, a range of possible NPV will be
obtained that allows for the uncertainty range to be
tabulated and observed.

2.3.2 Quantification based on PDF of the underlying
distribution

In computing the expected economic performance of
the decisions without uncertainty range, the NPV
equation is still denoted as equation 6, but the way the
benefit of having the protection measures is computed for
the NPV uses the exact form of the PDF. The benefit thus
can be denoted as:

B.(q) = R, _(q) — R, ,(a) (11)

where T represents the underlying characteristic of the
‘future’ distribution function, hence is unique for every
scenarios considered.

3 Results

The nonstationary underlying distribution that has
been parameterized based on the long time series of
Thames at Kingston historical records and the assigned
rate of change (Section 2.1) were used to generate 300
sets of ‘historical’ and ‘future’ annual maxima flow
series. The number of simulations was arbitrary chosen.
Altogether, 11 scenarios were considered all with fixed
rate of change for the historical underlying distribution
(u; = 0.2 m’/s), but each scenario- with varying rate of
change for the future underlying distribution.

As a first instance, the risk-based optimization
methodology with stationary (SE) and nonstationary
(NSE) model choice was implemented for the 300 sets of
the simulated ‘historical” records. The optimal protection
design based on the model choice and the corresponding
investment costs were estimated using Equation 8 and the
results were tabulated in histograms and box-plots as
shown in Figure 3 and 4. The red dotted vertical line
overlaying the histograms represents the optimal design
(i.e. 456 m’/s) based on the perfect information of the
historical underlying distribution (POP).
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Figure 3: histograms and boxplots of optimal protection design
estimated based on nonstationary (NSE) and stationary (SE)
model choices. The red line refers to optimal protection design
based on perfect information (POP).
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Figure 4: boxplots of investment costs of decisions based on
nonstationary (NSE) and stationary (SE) model choices. The red
crosses refer to investment costs based on perfect information
(POP).

In the probability theory, the expected value from the
long-run average value should converge to the value of
POP. However, as can be seen from Figure 3 and 4 the
median values from the NSE model do not converge to
the values from the POP. In fact, the distribution from
NSE does not converge to asymptotic normal
distribution. Although a higher number of simulations
might improve the result, a subsequent test using 500
simulations improve the bias of the expected value by

only 0.09% from that of 300 simulations, which can be
considered insignificant. It is therefore decided that the
experiment will be preceded with the initial 300
simulation sets.

Despite the existing bias from the sampling error
regardless the model choice, a smaller bias is obtained
from NSE as compared to SE. The smaller bias from
NSE is consistent with what may be expected from
applying the same model representation in the decision-
making as to that of future scenario (i.e. 0.2 m’/s/year).
However, the variance in the outcomes is higher for the
NSE as compared to SE. This behaviour is expected as
the nonstationary model has a higher number of
parameters as compared to SE [28].

The study is continued by working with the simulated
datasets of the 11 considered scenarios of future change.
As to have an insight on the possible range of flood
damage upon do-nothing condition, the simulated ‘future’
extreme flows were fed into the damage function with the
do-nothing flow threshold as the point of reference.
Figure 5 shows the range of total flood damage in
economic terms that can be expected from each of the
considered future scenarios of change. Higher median
values of flood damage can be seen from the future that
has a higher rate of change of extreme flow discharge.

The risk-based optimization methodology with SE
and NSE model choice respectively is implemented
independently to each of the 300 historical realization
sets of the 11 future change scenarios. Flood damage
reduction of having the optimal protection associated
with the SE or NSE model choice and the future
underlying distribution was then quantified by solving
Equation 10. Subsequently, the NPV for each simulation
set was computed using Equation 9.
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Figure 5: Distributions of total damage of do-nothing over the design life of protection, associated with nonstationary and stationary
estimates respectively for different possible future 4.

The resulting total benefit over the appraisal period
for each simulation set corresponded to each future
scenario were recorded and tabulated accordingly as
presented in Figure 7. The outcomes of NPV were

similarly tabulated according to the considered scenarios
as illustrated in Figure 8. To compare the results of NPV
based on realization values and those of the POP, the
NPV based on the POP were solved using Equation 9
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based on risk reduction benefit of Equation 11. The
results were tabulated in the same figure as to those from
simulations to allow direct comparison (Figure 8).

From Figure 6, the total damage caused by SE model
choice when in fact the future is nonstationary exhibits
higher median and maximum values as compared to the
total damage obtained from the NSE model choice. The
behaviour is most likely due to the condition of under
protection entailed the SE model choice. In return, this
has causes lower total benefits for SE-based protection
design as compared to those of NSE for all scenarios.
Nevertheless, the median of total damage and total
benefit regardless the model choice show upward trends
across higher rate of change, suggesting the higher
benefit of protection against flood for much intensifying
future change despite the model error.

The median of NPV in Figure 8 shows similar
behaviour with higher values for higher ‘future’ rate of
change. The results reflect the effects of higher total
benefits for higher rate of change and fix investment
costs with respect to the SE and NSE model choice in the
decision making process across all future scenarios
considered. In addition, the positive NPVs from all
possible decisions under all considered scenarios indicate

the robustness of the risk-based optimization intervention
approach used in the decision making process.

It is intriguing to find that using a stationary model in
the decision making process for unprecedented
nonstationary future result in only slightly less expected
total benefits of risk reduction and NPV as compared to
the results when the nonstationary model is used. All
scenarios of change that have been considered in this
study including the most extreme case of change (u; = 1
m’/s/year) show that the discrepancies between the model
choices are small. The behaviour is likely caused by
fluctuations of stationary distribution near the
nonstationary one that consequently makes the results
close to each other. Similar minor effects between the
stationary and nonstationary models have been mentioned
and demonstrated in [15] using a range of return periods
and associated bootsrap 95% confidence interval.

Further comparison between the expected values of
NPV from perfect information with the ones from
estimated distribution parameters (Figure 8) indicates that
the results from the estimated distribution parameters are
converging to the ones from parent distribution,
increasing the confidence in the simulation setup and the
resulting outcomes.
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Figure 6: Distributions of total damage of with-project over the design life of protection, based on nonstationary and stationary
estimates respectively over different possible future u.
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estimates respectively for different possible future u;.
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Figure 8: Distributions of NPV of with-project over the design life of protection, based on nonstationary and stationary estimates
respectively for different possible future u;

4 Discussion and conclusion

The paper has demonstrated the effects of stationary
and nonstationary model choices against a number of
nonstationary future scenarios in terms of their economic
performances. Risk-based optimization methodology has
been adopted in the decision making process. The results
reveal several profound findings that are highlighted in
the subsequent paragraphs.

The higher variance in the estimated optimal
protection from nonstationary model choice that result in
a higher uncertainty range as compared to stationary
model choice may give preference to the stationary model
in flood frequency analysis despite the possible
nonstationary future change. Furthermore, the use of a
stationary model as compared to a nonstationary model in
estimating the optimal decision for future that is
unknowingly exhibit nonstationary only brings to minor
discrepancies in the total benefit and NPV. The results
suggest that stationary model remains relevant in
preparing for future change despite the potential model
error. This further echoes a strong suggestion in [15]
confirming that stationarity should remain the default
assumption even when the evidence for nonstationarity is
apparent.

However, it should be stressed here that the
preference on stationary models over nonstationary
models does not mean that nonstationary models should
be discarded [16]. If evidence/prediction of future change
in extreme flows is apparent and modelling capabilities
exist, a decision analysis incorporating nonstationary
models in addition to stationary models should be
undertaken to have prior insights on the relative outcomes
corresponding to the models used. Such additional
information would be of valuable in the decision-making
under uncertainty of flood risk management.

For practical application in decision making of long-
term flood protection, the study reveals that the risk-
based approach is promising in ensuring robust decisions
in the face of uncertain future change. Unlike the
conventional fix target protection (e.g. return period), the
risk-based approach considers a wide range of possible

flood events and their possible consequences, whilst
evaluating a range of flood protection levels. The
approach allows a cost-effective solution to be estimated
through the optimization procedure within the RBOM.

The Monte Carlo simulation methodology for
uncertainty range quantification allows the influence of
natural variability additional to the model error to be
explicitly addressed. However, it is influenced by the
parameters of the parent distribution. This study has
adopted the available long time series of Thames at
Kingston historical records for a reliable parameterization
of the PDF. Smaller sample size would inevitably cause
discrepancies. However, reliable outcomes can be
obtained when using sample size of 50 years as
demonstrated in this study. Similar exploration, therefore,
can be undertaken for other cases with relatively small
sample size.

Currently, the study has been expanded to include
climate model based projections of future flows for the
case study area to compare the application of different
information sources, i.e. directly from historical
hydrometric records and from the climate model
projections, and the effects of the distinct information to
the decisions performance. Initial statistical tests
undertaken for the climate model based projections future
flows have revealed that there is a possibility of a
preferred nonstationary model when using the climate
model based projections of future flows. Hence,
exploration of decisions performance involving the
nonstationary  statistics based on climate model
projections additional to the conventional stationary
assumption would provide valuable insights.

Since the outcomes of the economic performances
depend on the behaviour of the probability distributions
used in the decision-making, it is necessary to investigate
the discrepancies and patterns of fluctuation in the
probability distribution of stationary and nonstationary
condition. The effects of the representation of the
probability distributions to the ultimate economic
performance can thus be investigated more rigorously
and brings to a better understanding.
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