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Abstract. Described low-dimensional model, that implements the various known regimes

of cosmic dynamo systems, in particular, the various regimes of reversals. The source

of regular reversals in the model is its internal dynamics. Violation of this cyclicality,

failures in the a dynamo, the occurrence regime irregularity reversals caused by chaotic

fluctuations in the parameters. This fluctuations are interpreted as the result of sponta-

neous coherent addition of the higher modes. The simplicity of the model allows you to

easily modify it for various celestial bodies.

1 Introduction
For systems of cosmic dynamo (planets, stars, galaxies) are usually considered three mechanisms αΩ,
α2 and α2Ω, of which the third is the most general [1, 2]. The first two are used when the efficiency

of α- and Ω-generator differ sharply. In particular, a strong differential rotation generates a magnetic

field described by a αΩ-dynamo.

Known properties of dynamo systems is the presence of reversals - abrupt change in the magnetic

field polarity, without significant restructuring of the motion of a conducting medium. Real cosmic

dynamo system demonstrate as a regular character reversals (like Sun), and very chaotic (like Earth).

The length of the polarity intervals in the geomagnetic field differs by several orders of [3].

The simulation of reversals is intensively developing part of the dynamo theory. Their research is

use both direct numerical simulation and simplified models. Direct numerical simulation of the mag-

netohydrodynamic equations reproduce multiple type of reversals, but does not answer the question

of their reason. In addition, the full equations contain a lot of parameters, which estimations differ by

several orders, or unknow. Therefore, using simple low-dimensional dynamical systems are trying to

explain the physical cause, features, the most important properties of this phenomenon, for example

[4–8].

In this paper, we simulate the inversion of the field in a simple model of αΩ-dynamo. This three-

mode model with fluctuating of intensities α- and Ω-generators. The source of these fluctuations

can be interpreted as a result of synchronization discarded modes of velocity and magnetic field.

Such spontaneous formation and destruction of the coherent structures is well known in the theory of

turbulence [9].
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2 Model equations

Consider a spherical shell of a viscous conducting liquid in a rotating coordinate system. The origin

coincides with the center of the shell, and the Oz – axis of rotation. We will also use the spherical

coordinates (r, θ, ϕ). On the inner r1 and the outer r2 boundaries the velocity is zero. This formulation

of the boundary conditions is typical for geodynamo and is set for definiteness. For a magnetic field

are set vacuum boundary conditions on the r2.
The physical parameters of the shell is constant. We also believe that the turbulence in the shell is

isotropic, and α-effect antisymmetric with respect to the equatorial plane. Therefore we accept scalar

parametrization of α-effect in the form α(r, θ) = α0a(r) cos θ, where max |a(r)| ∼ 1 and the coefficient

α0 > 0 determines the intensity of α-effect. Now we will consider the problem of kinematic dynamo,

but the further we introduce algebraic quenching of α-effect by large-scale magnetic field.

The dimensionless dynamo equation can be written as

∂B
∂t
= Rm∇ × (v × B) + Rα∇ × (a(r) cos θB) + ΔB,

∇ · B = 0,

(1)

where Rm - magnetic Reynolds number, and Rα- amplitude of α-effect. Velocity v is considered a

given constant. This type of dimensionless equations corresponds to the choice of radius r2 as length

scale L, magnetic diffusion time L2/νm as the time scale (νm - magnetic diffusion coefficient) and some

velocity value U and the some magnetic field value B0.

In the simplest form αΩ-dynamo considered that medium motion is a differential rotation, ie, field

v – toroidal. But we know that in reality this movement is convection and v includes poloidal compo-

nent. Moreover, spherically uniform heat flux is excited by convection only poloidal component and

toroidal arise only as a result of the Coriolis drift.

Therefore, we set the velocity field as a linear combination of several modes of the free dissipation

of the fluid in the shell. All these modes have the form vT
k,n,m = ∇ ×

[
RT

kn(r)Y
m
n (θ, ϕ)r

]
(toroidal) and

vP
k,n,m = ∇ × ∇ ×

[
RP

kn(r)Y
m
n (θ, ϕ)r

]
(poloidal), where index k determines the number of convection

layers in the radial direction. The axially symmetric case m = 0. Parameters RT
kn(r) and RP

kn(r) depend
on the aspect ratio r1/r2. We used the terrestrial value 0.35.

Differential rotation correspond to the modes vT
k,1,0. They are consist in the linear capsule of

the set
{
vT

k1,1,0
, vP

k2,2,0
, vT

k3,3,0
, vP

k4,4,0
, . . .
}
, which is invariant under the Coriolis drift. Because any such

mode are driven rest by rotation. Then, in the simplest case, the poloidal velocity component – a

vP
+ + 0, 2, 0. It turns out that the distribution of this mode Coriolis drift direction in the shell volume

is well approximated by a combination of four toroidal modes: vT
0,1,0, vT

1,1,0, vT
0,3,0, vT

1,3,0. Therefore,

we set the velocity as a combination of these five modes. The coefficients are chosen so that the

combination approximates one of the eigenmodes of the Poincare operator . The scheme of calculation

of such approximations is described in [10].

For representation of the magnetic field, we will use some of the of Ohmic decay modes BT
k,n,m

and BP
k,n,m. Their structure is similar to the previously described modes of free dissipation of velocity.

We selected of magnetic modes by the scheme proposed in [11].

Let the magnetic field is represented by a linear combination of several modes. Substituting this

expansion in the induction equation (1) and apply the Galerkin method. We obtain a system

dgk

dt
= Rem

∑

i

Wkigi + Rα
∑

i

Akigi − ηkgk, (2)
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Figure 1. The areas of field generation. Red dots – non-oscillatory dynamo; green dots – oscillatory dynamo.

where gk(t) – magnitudes of the modes, and ηk – eigenvalues. Matrix W and A are formed by Galerkin

coefficients .

Consider the eigenvalues of matrix of the system (2). Let us call the leading and denoted as λ it

of them, which has the largest real part. Clearly, the dynamo works if and only if Reλ > 0. Decisions

will be oscillating if the number λ imaginary.

In accordance with the approaches of work [11] magnetic field is represented to minimum number

of the modes, sufficients to produce oscillatory dynamo.

By varying the parameters Rem and Rα, we found that oscillating solutions arise, if we use the the

following three lower modes: BP
0,1,0 (dipole), BT

0,2,0 and BP
0,3,0. Next, we denote their B1, B2, and B3,

respectively.

Of course, the eigenvalues of the system (2) depend on the type of the radial part of the α-effect
a(r). We used three ways: a(r) = 1, a(r) = r, a(r) = 1/r.

Note that in the [11] for oscillating solutions authors took 5 magnetic modes for dynamo in the

star with a thin convective shell, but they used a toroidal velocity like differential rotation. Most likely,

a smaller number of modes in our work can be explained by a more complex structure of the velocity

field.

On Fig. 1 shows the areas of oscillatory and non-oscillatory dynamo for a(r) = 1/r. Other variants

a(r) are given a very similar area, so we continue to limit ourselves this dependence.

Now we introduce in (2) algebraic quenching of α -effect and fuctuations:

dgk

dt
= Rem(1 + ζ(t))

∑

i

Wkigi +
Rα(1 + ξ(t))
1 +
∑

j g
2
j

∑

i

Akigi − ηkgk, (3)

where ζ(t) and ξ(t) – stochastic processes whit zero means.

As mentioned above, these processes are simulated spontaneously emerging and spontaneously

destroying the coherence impact the discarded modes velocity and magnetic field. The structure of

the processes is following.
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We take on the time axis of the random sequence of points 0 < τ1 < θ1 < τ2 < θ2 < · · · < τk <
θk < . . . . We assume that the k-th coherent structure is formed at the time τk and destroyed at the time

θk. Then T est
k = τk − θk−1 - waiting time of formation next structure, and Tk = θk − τk - duration of

its existence. The processes ζ(t) and ξ(t) are zero during the waiting time, and ζ(t) = ζk and ξ(t) = ξk
during the time of existence . Here ζk and ξk independent random variables with zero mean. The laws

of the distribution of these variable, as well as T est
k and Tk selected in numerical simulations.

3 Simulation results
Consider the results of computational experiments with the model (3).

From the Fig. 1 we see, that the bifurcation point in the linear approximation (2) is a boundary

point of red, green and white areas, i.e. (Rem,Rα) ≈ (49, 11).
First, we carried the calculation of the solutions of (3) at (Rem,Rα) with the vicinity of point

(49, 11) and zeroes ζ(t) and ξ(t). In the nonlinear case, the bifurcation point has shifted to (Rem,Rα) ≈
(42.15, 5.45). It was also found that the system is highly responsive not only to changes in the param-

eters, but also to initial conditions.

Therefore, one might expect that the impact of even small fluctuations will switch model between

different regimes of dynamo.

In the simulation, we used the exponential law of distribution for the waiting time T est
k and the

existence time Tk, and themselves these variables were independent. Mean values
〈
T est

k

〉
= 5 and

〈Tk〉 = 30, i.e. time of the existence of coherent structures much less time of their expectations.

The values of jumps ζk and ξk are uniformly distributed in the interval [−0.01; 0.01] and

[−0.1; 0.1], respectively.
The strong differences in the choice of variance of jumps conditioned by the following considera-

tions. α-effect has a turbulent nature, so its response to the restructuring of the turbulence structure i.e.

xik, can be considerable. Then, disturbance in the magnetic field through the Lorenz force changes the

large-scale medium flow. We have described this change jump zetak. It therefore seems reasonable

that the intensity of fluctuations in the turbulence generator should be much higher than in a large

scale generator.

By selecting different values of (Rem,Rα) in a small neighborhood of a bifurcation point and

different initial conditions, we have received a variety of modes dynamo: quasi-periodic, dynamo-

bursts, the disappearance of the field, followed by growth, irregular reversals.

On Fig. 2 shows the examples of the two of realizations. Dimensionless amplitude of the dipole

are plotted on the vertical axis.

At the top is mainly quasi-periodic solution. There are only a few failures in the dynamo cycle.

This solution is like to the solar dynamo. It is worth noting the almost complete disappearance of the

field in the 340 ≤ t ≤ 370 and several shorter intervals. There is a certain analogy with the Maunder

minimum, the failure of the dynamo.

The solution at the bottom of Fig. 2 is characterized by an extremely irregular reversals, which is

typical for Geodynamo.

Thus, in the proposed simple model of dynamo at close values of the parameters can reproduced

different modes dynamo, which are observed in real dynamo systems. Of course, all these solutions

able to get a lot of writers and earlier as a result of direct number simulation, and the simple models.

The advantage of the proposed model is that it is not associated with the structure of a particular

celestial body and does not require knowledge of the distribution of its physical parameters.

The source of regular reversals in the model is its internal dynamics, but violation of this cyclical-

ity, failures in the dynamo, the yield on the regime of chaotic reversals arises due to the restructuring

of the turbulence structure.
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Figure 2. The different regimes of changes the amplitude of the dipole. Top: (Rem,Rα) = (42.2, 5.5). Bottom:

(Rem,Rα) = (42.2, 5.7).
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4 Conclusion

Proposed in this paper, the model allows to describe various known regimes of cosmic dynamo sys-

tems, in particular, the various regimes of reversals.

The simplicity of this model makes it easy to modify it for various celestial bodies. So, depending

on the aspect ratio, you can adapt it to the terrestrial planets, giant planets, fully convective stars, stars

with a thin convective shell. This will change the parameters of the velocity modes, that may change

the set of magnetic modes or their number. Knowledge of the physical parameters of a particular

celestial body is not required.

A wide variety of regime may be provided as different distributions of variables T est
k and Tk. For

simplicity, we have chosen the exponential distribution for simulation. However, it is known that for

turbulence is more characteristic of the power laws. It seems that the introduction of power lows gives

an even more complex statistics of reversals, for example, similar paleomagnetic polarity scale.
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