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Abstract. The paper reviews the method of determining the shape and 
size of the coal self-heating source on coal pit benches and in coal piles 
during mining of coal by the open method. The method is based on the 
regularity found in the 1970s of the previous century and related to the dis-
tribution of potential of the natural electrical field arising from the tem-
perature in the vicinity of the center of self-heating. The problem is re-
duced to the solution of inverse ill-posed problem of mathematical physics. 
The study presents the developed algorithm of its solution and the results 
of numerical simulation. 

1 Introduction 

Spontaneous combustion of coal is one of the main causes of fires in open and underground 
development of coal seams. Geological and mining factors play a significant role in the 
process of spontaneous combustion of coal. In case of open mining the tectonic disturb-
ances of coal benches and enclosing strata can be attributed to the first factors when heavily 
fragmented and cracked coal can lead to increase in the porosity and surface area of coal 
exposed to oxidation, as a result even at normal temperatures of the ambient air the heat is 
generated. The order of mining operations in relation to the strike of seams, method of con-
ducting drilling and blasting operations, parameters of the system of mining, the height and 
time of bench standing can be attributed to the second group of factors. The total influence 
of all factors shows itself in formation of the loose accumulation of coal, in some cases 
exceeding the critical mass, which ensures accumulation of heat due to oxidation of coal 
than its consumption by convection, conduction, thermal radiation and other causes.  

For control and diagnostics of the processes of self-heating and spontaneous combustion 
of coal it is required to promptly assess the power of the heat source, its size and shape. 
These parameters allow the proper positioning of the wells for injection of antipyrogens in 
the rock mass and their necessary volume in order to retard coal oxidation process. The 
theoretical basis of the process of coal self-heating control and definition of the form of the 
heat emitting source is detected in the 1970s steady relationship between the emergence of 
pockets of heat and the formation on the surface of coal accumulations of changes in the 
potential appearing in the process of self-heating of quasi-stationary electric field. There-
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fore, the problem of determining the shape of the source by measuring the field potential on 
the surface of the accumulation is very important.  

From the point of view of applied mathematics, the problem of determining the shape 
and dimension of the sources of fields having different nature (electrical, gravitational, 
thermal, magnetic or other) is the inverse and ill-posed problem of mathematical physics [1, 
2]. Most of the existing theoretical methods and numerical algorithms are devoted mainly 
to the solution of linear inverse problems, where the unknown function is a co-factor of 
some well-known expressions characterizing the environment [3-6]. Much less papers are 
devoted to development of algorithms for solving non-linear inverse problems [7-11]. 

2 Results and discussions 

2.1  Formulation and solution of the direct problem  

Let us assume that the natural electric field (NEF) is generated by a horizontal cylindrical 
source of current with arbitrary but constant cross section. We assume as well that the 
length of the source and depth in the lower layer of  two-layer homogeneous isotropic space 
with plane-parallel boundaries are known (Fig. 1). 

 
Fig. 1. The scheme of the containing space and cylindrical field source 

In this case, the potential of the point source will be determined by the known formula  
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where C – coefficient characterizing the force of the electric current source; M - the 
point of measurement of the field potential on the earth's surface.  

To obtain the computing formula for the value of the cylinder potential, we integrate the 
expression (1) by the volume of cylinder VP:  
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where Р – the point located in the cylinder volume.   
We pass in the integral (2) to non-dimensional variables by the general formula 

wzw M =⋅ −1 , whereby w we understand coordinates of the point of the field М and the inte-
gration variables of cylinder Р. Then, (2) will take the form 
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Then, to simplify the form of the formulas we will not draw the horizontal line at di-
mensionless values. Let’s integrate (3) over the interval ];[ HHyP −∈ : 
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( ) 22 )1( −+−= PMP zxxD . 
To calculate the double integral, we define the boundary of the region as a function 
)(ϕρ in the polar coordinate system. The transition to the latter is performed in the standard 

way: ϕ= cosrxP , ϕ= sinryP , where ]2;0[ π∈ϕ and [ ])(;0 ϕρ∈r where )(ϕρ  is the periodic 
function.  

Then (4) will assume the form ϕ
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Thus, the problem of determining the form of the source of the field from measurements 
of the potential on the day surface has been reduced to the Fredholm-Uryson integral equa-
tion of the first kind (hereinafter referred to as EI) with respect to the unknown function 

)(ϕρ : 
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where rdrrMFR ⋅ϕ= ∫
ϕρ )(

0

),,(  – nonlinear kernel; ∗U  – values of potential measured on 

the day surface (NEF). 
The formula (5) allows us to compute the potential of NEF of the cylinder in any point 

on the surface of earth. Further on, to solve the inverse problem of restoration of the cylin-
der form, we will use only the central axis of symmetry 0=My .  

2.2  Solution of the inverse problem 

For the definition of function )(ϕρ we consider the problem of finding the minimum of reg-
ularized functional of A.N. Tikhonov [1, 2, 14]. 
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22)( d  – stabilizing second-order functional; ( )MxU ∗  – the right part of the 

IE, which in practice is set experimentally, and for test problems is determined by solving a 
direct problem using formulas (4) with the addition of a random correction simulating inac-
curacies in full-scale measurements; α is the regularization parameter.   

We shall seek the minimum of the functional (6) by the method of conjugate gradients 
[13], whose general iterative scheme has the form  

  
)()()()1( qqqq Ik ⋅+ρ=ρ + ,     (7) 

where )1()(/)( −
ρ ⋅γ+Φ−= qqq II , q – iteration index; k – minimization step; I – linear com-

bination of the derivatives (gradients) in the previous steps; coefficient )(qγ  is determined 
by one of the formulas [13], /

ρΦ  – the Frechet derivative of the functional (6). 
Let's consider some aspects of numerical realization of formulas (5 – 7).  
The integrand of the kernel R is a smooth monotonically increasing function on the in-

terval )](;0[ ϕρ , where ]2;0[ π∈ϕ  and )(ϕρ  – fixed consistent values. To calculate the inte-
gral in (5), we use the 5-point Gauss formula. 

To calculate the integrals and the derivative in (6), we define a grid with respect to the 
variables, Mx , φ. The step of the grid with respect to the variable φ will be equal to 

n
h π
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2
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m
cdh −

=2 . All integrals in (6) will be calculated by 

the Simpson formula. In the work [16] in case of the linear IE, the derivative ϕρ′ is approx-
imated by the right difference formula. Numerical experiments have shown that with a rela-
tively small (about 100) number of nodes ][ jϕ , the accuracy of such an approximation is 
low ( 06,0≈ ) and in case of the non-linear IE, the resulting errors have a significant effect 
on the computational process. Therefore, we approximate the derivative ϕρ′ by a central 

difference relation of the second order of accuracy 
1
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2
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periodicity of the function )(ϕρ  this approximation can also be used for boundary points. In 
fact, let the function be defined on an interval ];0[ Λ , where Λ is the period of the function 
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12

]1[]2[)2()0(
h

K −ρ−ρ
=πρ′=ρ′ ϕϕ , where the number of the array of values is indi-

cated in square brackets ][ jρ ; K- is the number of elements in the grid with respect to the 
variable φ. Note that if the region has a symmetry about the Ox axis, then this derivative 
will be zero. 

Taking all the above into account, we obtain a discrete analogue of the expression (6) of 
the form  
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where ϕρ′=T  – the difference scheme indicated above; µσ, - are the coefficients of the 
Simpson formula. 

To implement the scheme (7), we calculate the derivative of (8) with respect to the vari-
able ];1[],[ Ktt ∈ρ : 

( )

( )

( )

[ ]

[ ]

[ ]
11

[ ] [ ], [ ]

[ ] [ ], [ ]2 [ ] [ ] [ ]

[ ]

t M

KN

Mt
ji

M

i R x i t

j R x i jt t TT t

U x i

ρ

ρ

σ ρ

µ ρµ α ρ
==

∗

 ′ ⋅ × 
  
    ⋅ −′Φ = × + +    ×    

    −   

∑∑
, 

where the derivative ])[,],[(][ ttixFR Mt ρ=′ρ , and expressions TT[t] are implemented in 

the following way: 2
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To find the step of minimizing k, we will use the "golden section" method for the objec-
tive function ( )Ik ⋅+ρΦ . Numerical experiments have shown that this function is unimodal 
on the interval 0≥k . Since it is impossible in advance to determine the interval at which the 
minimum point is contained, we adhere to the following algorithm.  

2.3 Algorithm 

Step 1. We set the starting interval for the change of k: 1;0 <<ε== ba  and the error of the 

"golden section" method ε<<ε1 .   
Step 2. Using the "golden section" method, we define the minimum point of the objec-

tive function – kmin. We calculate the auxiliary value 01
min

>−=∆
k

b . 

Step 3. We verify the truth of the inequality 1,0<∆ . If "yes", then increase the right 
boundary of the minimum search interval 1+= bb  and go to step 2. If "no", then the value 
of kmin is the required minimum of the objective function. 

The regularization parameter α will be determined, following the studies [13-15], by the 
following iterative way: ( )qf qq ,)1()( −α=α , while in the first step of the conjugate gradient 

method we set 0)0( =α , and on the second step – ( )
( ))1(

)1(
)1( ;

ρΩ

ρ
=α MxW . In the works [9, 10], a 

saw-tooth effect of "blurring" an approximate solution is observed, depending on the choice 
of the regularization parameter α. In case of a linear IE, as these studies show, it is possible 
to select such a constant value of the parameter constq =α )( that the indicated ‘saw-tooth’ 
formation will not be noticeable. In case of a nonlinear IE, such a value of the α parameter 
could not be chosen, so to neutralize the "blurring" after each step of the conjugate gradient 
method, the values were smoothed using the arithmetic mean of two neighboring val-
ues ][ jρ . 
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Considering the above solution method, it can be noted that it depends on the choice of the 
starting values and the patterns of variation of the following parameters )(qγ , )(qα , ε, ε1, ρ(0). 
Numerical experiments have shown that the choice of concrete realization of each of them 
has a significant effect on the efficiency of solving the inverse problem.   

Here is an example of the implementation of a numerical algorithm.  
Let us consider a test region in the form of a cylinder 100.0 m long and a cross-section 

in the form of an ellipse, the dimensionless equation of which in the polar coordinate sys-
tem has the form  

ϕ+ϕ⋅
=ϕρ

2222 cossin
)(

baz

ab

M

,     (9)  

where we assume zM = 150.0; a = 130.0; b = 70.0 m.  
To simulate errors in full-scale measurements, we will add a random correction to the 

potential values calculated from formula (2) as follows: ( )5,05,0 −⋅+=∗ randUU ex , where 
rand are uniformly distributed numbers on the interval [0; 1], Uex – the exact calculated 
values of the potential according to the formula (4). 

The choice of the selected parameters will be the following: Mz/0,20)0( =ρ ; 210−=ε ; 

6
1 10−=ε ; ( )

( ))1(

)(
)(

;
;2
−∆

ρ∆⋅−∆
=γ q

q
q

Ig
Gg , )1()( −−=∆ qq GGg , ρΦ′=G , )1()( −ρ−ρ=ρ∆ qq  ; 

qqq 85,0)1()( ⋅α=α − . 
We will show in Figures 2 and 3 the graphic result of restoration of the cylinder cross-

section form after 200 iterations. 

 
Fig. 2. Restoration of the area and value of the potential after 200 iterations and smoothing only after 
the first iteration of the conjugate gradient method 
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3  Implementation of a numerical



 
Fig. 3. Restoration of the area and value of the potential after 200 iterations and smoothing after each 
iteration of the conjugate gradient method 

nclusion 4Co
The numerical method of interpreting geophysical data of measurements of the potential of 
a quasi-stationary electric field is developed in the article in order to determine the form of 
the heat release source. Let's give practical recommendations on the use of the developed 
methodology. 

A coordinate grid is constructed on the surface with a step of about 25-50 meters. In 
each node of this grid, the field potential is measured. The contour map is constructed, 
along which the elongation line of the proposed source is determined. More accurate meas-
urements in the amount of at least 100 are taken along this line. These data will be used as 
initial data. If detailed measurements are impossible, then an approximate interpolation 
polynomial is constructed, along which the required values of the potential are determined. 
Further, with the help of the developed program, the form of the section of the cylindrical 
heat source is defined.  
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