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Abstract. The paper presents methods of modeling and analysis of 
ionospheric parameters, which realized in the program system of complex 
analysis of geophysical parameters "Aurora". The methods allow to 
analyze of characteristic changes in the ionospheric parameters and 
allocate the anomalous features during periods of ionospheric disturbances. 
The algorithm parameters are adapted for analyzing the ionospheric data of 
the Paratunka station (Kamchatka) and based on results of the estimates 
(station data of Yakutsk, Gakona, etc. were analyzed). Methods can be 
applied for the mid-latitude region. The system is implemented in the 
public domain (http://aurorasa.ikir.ru:8580). 
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1 Introduction 

The realm of the research concerns the problems of the theory of direct experimental data 
processing. It is associated with the monitoring and the prediction of the state of near-Earth 
space. At the present time, the databases of various geophysical parameters (National 
Geophysical Data Center; MAGBAT; SuperMAG) were formed and provided with the 
means of primary processing and updating. However, the tasks of effective methods 
creating for the data analysis, the interpretation of the obtained results and their 
correspondence to model constructions remain largely open. The influence of solar activity 
on the magnetosphere and the Earth's ionosphere is complex, many aspects of which have 
not been sufficiently studied so far [1-6]. The most strong and complex ionospheric 
disturbances (irregularities) are formed during solar flares and geomagnetic storms. They 
manifest themselves as significant changes of electron concentration in comparison to some 
characteristic (calm) level and reflect in the ionospheric parameters [1, 2, 7-9]. Methods 
and computational algorithms developed by the authors for processing of the ionospheric 
data and the detection of ionospheric irregularities are described in the present paper. 
Ionospheric data of IKIR FEB RAS chain located in the northeast of Russia were used for 
the testing of software tools based on the methods and the algorithms. The software is 
presented in the paper.  
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A large number of studies have been devoted the problems associated with the 
monitoring of ionospheric conditions and the detection of ionospheric irregularities [1-18]. 
The International Refence Ionosphere (IRI) model is the international standart of the Earth's 
ionosphere model [10-13]. It is based on a wide range of ground and space data. Its 
parameter estimation accuracy depends significantly on the availability of qualitative 
registered data for a particular region. The accuracy of the IRI model also depends on the 
level of solar activity, decreasing with a solar activity increase [8, 10-13]. As the IRI model 
allows to calculate the monthly averages of the ionospheric parameter data for calm 
conditions, its aplication do not effective for tasks of ionospheric disturbances detection [8, 
10]. The recent developments of empirical models, based on neural networks, allow for  a 
significant improvement of the forecast quality in comparison with the IRI model, as they 
are easy to implement automatically and flexible enough [7-9, 14, 15, 17]. However, these 
models belong to the “black box” model class. Therefore, for feature spatial description, 
long training samples with qualitative data are required, which are prone to over fitting and 
can lead to unexpected results with very noisy data. Also, the operation of systems, based 
on neural networks, in real time (or close to it) requires the availability of the current 
information on a complex of geophysical parameters, which is not always feasible [8, 9]. 
On the basis of the TEC measurements, Afraimovich E.L., Perevalova N.P., and Kosogorov 
E.A. [1, 7, 16] developed  an approach and a software system for the global detection and 
the monitoring of ionospheric disturbances of natural and technogenic origin (such as, solar 
flares and eclipses, geomagnetic disturbances, earthquakes, missile launches, industrial 
explosions, etc.). TEC data are recorded using the GPS navigation system signals. As noted 
by the authors themselves, the method error increases significantly during ionospheric 
disturbances [1]. Also, the results of the ionospheric irregularities detection depend on the 
parameters setting of GPS/GLONASS ground-receivers net (spatial and temporal 
resolution, sensitivity). These parameters have influence with a type of detected 
irregularities (large-scale, medium-scale, small-scale, etc.), that can be registered by a 
specific network [7]. Therefore, the accuracy and the efficiency of the described methods 
depend largery on the availability of reliable and qualitative historical ionospheric data. 
Also, they are determined by the availability of the current geophysical parameters 
determining the state of the near-Earth space.     

The methods described in the paper are based on a complex approach that combines the 
traditional methods with modern approaches of pattern recognition and artificial intellect, 
as well as information technologies and systems. The methods are realized in “Aurora”  
software system for complex analysis of geophysical parameters. The system is presented 
in open access on the website at http://aurorasa.ikir.ru:8580 (mirror is 
http://aurorasa2.ikir.ru:8580). Analysis of the ionospheric parameters is performed on the 
basis of multicomponent model (MCM) developed by the authors [17, 18]. MCM allows us 
to study the typical duirnal and season vatiations of ionospheric process and to detect 
anomalies. Ionospheric anomalies can occur during increased solar and geomagnetic 
activities, as well as during seismic events on Kamchatka. The MCM construction is 
described in the papers [17, 18] in detail. It is based on a joint application of the wavelet 
transform methods with traditional autoregressive models (ARIMA models). The MCM is 
theoretically justified  [19]. Therefore, its advantage is the ability to obtaine the predicted 
data with a given confidence probability. Also, ARIMA methods, underlying of the MCM, 
allow obtaining quite accurate estimates with limited samples. The comparison of the 
MCM with IRI model, performed in the paper [17], showed that the MCM allowed a more 
accurate estimate of the predicted data, especially during the solar maximum. This confirms 
of the efficiency of the suggested approach.    

Another approach, implemented in “Aurora” system’s ionospheric component, is based 
on a combination of the wavelet transform and neural networks.  Noise component is 
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suppressed on the basis of ionospheric data preprocessing by wavelets. This operation 
allows improving the efficiency of neural networks for the ionospheric irregularities 
detection [7]. To more detailed study of the ionospheric parameter dynamics in “Aurora” 
system, the computational solutions based on the continuous wavelet transform (CWT) are 
used  [17]. The CWT application allows the detection of different scale anomalies in the 
ionosphere and the estimation of their occurence time, duration, and intensity. 

2 Methods for analysis of ionospheric parameters by the 
software system “Aurora” 

2.1 Modeling of ionospheric parameter time variations based on MCM 

Modeling of ionospheric parameters in the program system “Aurora” is performed on the 
basis of following operations: 

2.1.1  Using the multiresolution wavelet decomposition (MRA) [17 , 20, 21], the  
f0F2  time series is represented as components: 
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The wavelet decomposition (Eq. (1)) is carried out by the orthonormal wavelet basis 
Daubechies of third order (the basis was determined by minimization of the approximation 
error) [17]. 

2.1.2. Using the ARIMA methods [19], the modeling of )(1 tf  and )(2 tf components 
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k,3e  are the residual errors of the  th component model, determined as the 

difference between the actual and modeled values, and 
3N  is the length of the  th component.  

For the construction and the estimation of the model parameters for the  )(1 tf  and 

)(2 tf  components, we used historical hourly data of the foF2 of Paratunka site 
(Kamchatka, Russia, Institute of Cosmophysical Research and Radio Wave Propagation 
FEB RAS (IKIR FEB RAS), 52° 58′N, 158° 15′E) from 1968 to 2013. During the MCM 
identification, we considered the dependence of the ionospheric parameters on seasonal 
variations of solar radiation, solar activity level (SA) and geomagnetic activity. To obtain 
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models describing typical variations of the ionospheric parameters, the time intervals for a 
relatively calm geomagnetic field (sum of the daily K-indices   24K ), without strong 

seismic events occurring on Kamchatka (without earthquakes of   12K , within a 300 
km radius from the station), were used as estimates. The estimation of the model 
parameters was carried out separately for high and low levels of solar activity and for 
different seasons. The solar activity was estimated according to the average monthly radio 
radiation at a wavelength of f10.7  (for f10.7 < 100, the activity was considered low, while 
for f10.7 > 100, it was considered high). Modeling of the foF2 data in the program system 
“Aurora” is performed for winter (high and low SA) and summer (high and low SA) 
seasons. The following models are used: 
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2.1.3. The models (see Eq. (2)) describe typical variations of the ionospheric 

parameters, during the anomalous changes, the model errors increase. Thus, in the program 
system the detection of anomalies is carried out by the estimation of the model errors: 
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where 0U  is the length of the observation time window for the resolution 0j   (in the 

program, an user sets the value of 0U  on the basis of parameter «Error calculation 
window»). 

Fig. 1 illustrates the results of the foF2 data analysis for Paratunka station, performed by 
the MCM. In the analyzed period (30.05.2013 – 04.06.2013) during the magnetic storm of 
June 1, 2013, anomalous changes occured in the foF2 data as evidenced by the significant 
increase of MCM errors (the standart deviation (SD) was 2.5 for the )t(f1  component and 
4.5 for the )t(f2  component).     

 
Fig.1. The application of MCM during the magnetic storm on June 1, 2013 (Kamchatka, Russia, 

time UT):  a the foF2 data, b MCM errors ( )t(f1 component (black line) and )t(f2  component 
(green line)) and their standard deviations, c  Dst-index of geomagnetic activity, and  d solar wind 
speed. Red dashed line on graph b indicates the increase of MCM errors during the magnetic storm. 
On the graph c the arrow indicates the beginning of the magnetic storm. 

2.2 Approximation of ionospheric data based on the wavelet transform and 
neural network 

Approximation of the ionospheric parameter time variations in the program system 
“Aurora” is performed by the following operations: 

2.2.1 Using MRA the data time series is represented as )(1 tf  and )(2 tf components 
(see Eq. (1)). 

                                 
 

2.2.2 Using the inverse wavelet transform [21], the reconstruction of the initial 
resolution 0j   is carried out for component   

k
kk tctf )()( ,3,31  : 
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performed on the basis of pre-trained neural networks (NN).  
Hourly values of the foF2 from 1968 to 2010 were used for neural networks training. 

The data with significant gaps were not used in the training, and slight gaps in the data were 
filled with median values, which calculated for the corresponding hour. To approximation 
of the foF2 typical variations, the data for the periods without strong magnetic disturbances 
and seismic activity in Kamchatka were used during neural networks training. The 
construction of NN was performed separately for different seasons and different levels of 
solar activity (see 1.2). The quality criterion of the NN training was the condition: 
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where 0A  is predetermined small value, llА ccle ,0,0ˆ)(   is NN error at time l , 

lc ,0  and lc ,0ˆ  are desired and actual output value of the neural network. 
The constructed neural networks carry out the advance of the data by the following 

transformation: 
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where kq are weight numbers of q  neuron of the NN outpun layer, qi  are weight 

numbers of i  neuron of the NN hidden layer, ij are weight numbers of j  neuron of the 
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  and   bzaz 3 . Configuration of 

the constructed NN is represented on Fig. 2. 

 Fig. 2. Configuration of the neural networks  
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2.2.3 The trained NN allows to simulate typical time variations of data. Thus, the 
procedure of anomalous changes detection may be based on the analyse of the NN errors 

)(leА .  
Fig.3 illustrates the results of the foF2 data time variation approximation by the NN 

during the magnetic storm on March 17, 2013. The NN errors do not exceed 0.18 during 
calm geomagnetic conditions  (Fig. 3, graphs с and d). During the magnetic storm, the NN 
errors significantly increase, indicating  the disturbances  of the ionospheric parameter 
typical variations (Fig. 3, graphs c and d).  

 

 
Fig. 3. The results of the foF2 data aproximation by the NN for March 14-22, 2013 : a the foF2 

data (Paratunka station), b) the NN output  (blue line), the NN aproximation (red line), c) the NN 
errors, d) – the variance of the NN errors, and e) H-component of the Earth‟s magnetic field for 
Paratunka station (it describes the stage of the geomagnetic field). The error variances were estimated 
in a moving time window with length of 24 samples (it corresponds to the day). The arrow indicates 
the beginning of the magnetic storm. 
 
2.3 Anomaly detection in the ionospheric data based on the continuous 
wavelet transform 
To detailed analysis of the ionospheric parameters in the system “Aurora”, we use 
following computing solution: 

1. Performance of the continuous wavelet transform of data: 

                 ,)(: 2/1
, dt

a
bttfafW ab 
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where a  is a scale and  is a basis wavelet.  
2. Application of a threshold function for the obtained wavelet components abfW , :  
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and median, which, taking into account the diurnal variation of the ionospheric data, are 
calculated in a moving time window of length  for each hour. U  describes a value of the 
threshold.  In the program, an user sets the values of the   and U  parameters. The 
recommended value is 168 , which corresponds to a time interval of 7 days. Values 
of the U  parameter for Kamchatka were determined by the estimation of the a posteriori 
risk, and were  

5.35.2 U  for the data analysis during a high solar activity ( 100 > f10.7 );  

5.25.1 U  for the data analysis during a low solar activity ( 100  f10.7  ). 

The determined values of U  may be recommended for the data analysis of middle 
latitudes stations. 

3. The estimation of the intensity for detected anomalies: 
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 Fig. 4 illustrates an example of the aplication for the describing computing solutions. 
During analyzed period, the strong magnetic storm occured on August 3-4, 2010. On the 
eve of the magnetic storm, multiscale positive anomaly occured with about from 11.00 UT 
on August 2 to 10.00 UT on August 4 in the ionospheric data (positive anomaly is shown 
on Fig. 4 b, in red). The anomaly intensite reached a maximum at 23.00 UT on August 3, 
2010 (see Fig. 4 c). In the period from 11.00 to 12.00 UT on August 4, a positive anomaly 
was replaced by a negative anomaly (a negative anomaly is shown on Fig. 4 b, in blue). 
Negative anomaly was reached the maximum intensity at 17.00 UT on August 4 and at 
10.00 UT on August 5, 2010 (see Fig. 4 c). 
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Fig. 4. The results of the foF2 data processing during the magnetic storm on August 3, 2010 : a 

the foF2 data (Paratunka), b detected anomalies, c the intensity of anomalies, and d K-index of the 
Earth„s magnetic field (Paratunka). 

3 Conclusions 

The methods of the ionospheric parameter analisis, presented in the article, are realized 
in the ionospheric component of the program system “Aurora”. The system is available to 
users on the website at http://aurorasa.ikir.ru:8580. The following functions are realized in 
the software system:        

 Modeling of time variations by the MCM, based on the multiresolution wavelet 
decompositions and ARIMA methods; 

 Approximation of the ionospheric data based on the wavelet transform and 
neural networks; 

 Detection of ionospheric anomalies and the estimation of their intensity. 
The algorithm parameters were adapted for the processing of the Paratunka station data 
(53.0 N, 158.7 E).  Approbation of the algorithms was also performed and positive results 
were obtained for Magadan station (60.0 N, 151.0 E).  

The paper was supported by RSF Grant No. 14-11-00194.  The authors are grateful to the 
organizations carrying out the registration of ionospheric and magnetic data which were applied in the 
paper.  
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