
Parallel adaptive sparse approximation methods 
for analysis of geoacoustic pulses 
Alina Kim1,2, Olga Lukovenkova1,2,*, Yuri Marapulets1, and Alexander Tristanov1,3 
1Institute of Cosmophysical Researches and Radio Wave Propagation (IKIR), Far East Division, Russian 
Academy of Sciences, Acoustic Researches Laboratory, 684034 Kamchatka region, Elizovskiy district, 
Paratunka, Mirnaya str., 7, Russia  
2Vitus Bering Kamchatka State University, 683032 Petropavlovsk-Kamchtsky, Pogranichnaya str., 4, 
Russia 
3Kaliningrad State Technical University, 236022, Kaliningrad, Sovetskiy pr., 1, Russia 

Abstract. The article is devoted to a new approach in the analysis of 
geoacoustic pulses. The authors proposed a mathematical model based on a 
sparse representation of the signal. An adaptive matching pursuit method has 
been developed to identify model parameters. A parallel implementation of 
this algorithm is proposed on the CUDA platform. This allows real-time 
processing and modeling of signals. 

1 Introduction 
The passive acoustic emission method is widely used to study of the strength of materials, in 
geophysics and to study of the seismic process. It is based on the study of the characteristics of 
acoustic emission pulses that arise as a result of plastic deformation of solid media. 
Researches in Kamchatka shows that the acoustic emission method is effective in monitoring 
acoustic disturbances occurring in the sound range during activation of sedimentary rocks 
deformation at the final stage in the earthquake preparation. Such emission signals are called 
geoacoustic emission (GAE), and their disturbances are often used as operational earthquake 
precursors. 

Typical GAE signal represents the succession of relaxation pulses of different form, 
amplitude and frequency. The characteristics of pulsed radiation depend on the properties of 
the studied plastic processes. Geoacoustic pulses are characterized by a complex internal 
structure, a wide variety of time-domain waveforms, large amount of natural and 
technogeneous noise, short duration. These features significantly complicate the estimation of 
characteristics and analysis of signal structure. The classical time-frequency methods used to 
analyze similar signals in other research fields do not give good results. A short duration leads 
to a poor time-frequency resolution and the redundancy of the resulting decomposition does 
not agree with the additive character of the pulse generation process because the pulse is the 
sum of elementary pulses corresponding to separate deformations [1].  

It was necessary to develop a model that makes possible qualitative analysis of geoacoustic 
signals. The term "model of an isolated pulse" should be regarded as a linear combination of 
functions that satisfies the following properties: 
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1) functions (model components) should describe elementary pulses; 
2) model must have high accuracy and do not contain a redundant number of components. 
Due to the complex structure of the signals the methods used to identify the model 

parameters have the property of adaptability and adapt to the local features of the signals and 
allow for real-time processing. 

2 Sparse approximation and matching pursuit algorithm 
To a first approximation the geoacoustic signal model may be described as the sum of 
elementary GAE pulses and interference 
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The model identification method is based on the sparse approximation ideas. At first, a 
sparse representation is constructed over a large, in general case, linearly dependent set of 
different functions. It’s substantially increases the adaptability of the methods. At second, 
sparse representations are compact and not redundant. Finally, the sparse approximation 
methods were effective in solving similar problems in related fields of science. 

The sparse approximation problem is reduced to the signal representation in the linear 
combination form of the minimum possible number of functions for a given accuracy from 
some predefined set (hereinafter, the dictionary). 
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There is no algorithm that can solve this problem in polynomial time, but there are 
algorithms that can get an approximate solution. The two popular approaches to solving the 
sparse approximation problem are to replace the minimization of the l0-norm by minimization 
the l1-norm (Basis Pursuit, [2]) and replacing the minimization of the l0-norm by minimization 
the l2-norm (Matching Pursuit, [3]). Each of these approaches gives an estimate of the signal 
sparse representation on some dictionary Mii  1}{gDictionary  

A series of experiments was performed on real geoacoustic signals (the experiment is 
described in) to select the most suitable algorithm. The best results for the processing time and 
the accuracy of the obtained sparse representations were demonstrated by the Matching 
Pursuit (MP) algorithm proposed by S.Mallat and Z.Zhang. 

The algorithm is reduced to an iterative process of searching for dictionary elements that 
minimize the difference between the original function and the approximation at each step. 
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The classic MP algorithm allows to construct linear combinations as (1), satisfying the 
definition of the model, but has several disadvantages. The only way to improve the accuracy 
of the constructed approximations is the addition to the dictionary of new functions (atoms) 
that increases temporal and spatial costs (computing complexity of the MP is O(M3)). The 
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The classic MP algorithm allows to construct linear combinations as (1), satisfying the 
definition of the model, but has several disadvantages. The only way to improve the accuracy 
of the constructed approximations is the addition to the dictionary of new functions (atoms) 
that increases temporal and spatial costs (computing complexity of the MP is O(M3)). The 

need to use a dictionary of fixed size leads to "coarse" discretization in space of model 
parameters and reduces the adaptive property of the algorithm. 

The authors proposed an Adaptive Matching Pursuit algorithm which allow under 
conditions of limited computing resources to obtain qualitative signal approximation and adapt 
to the particular features of the signals in [4]. This algorithm is chosen as a method for 
identifying model (1) parameters. 

3 Adaptive Matching Pursuit 
The iterative refinement procedure was added to the classical MP algorithm to improve the 
quality of the approximation for the dictionary of fixed size. It lies in applying numerical 
method of alternating-variable descent type for searching atom with the highest value of the 
scalar product cmax with the signal (hereinafter, the "best" atom). 

1) to determine the scalar product of each atom and all its shifts with the signal, to 
remember the parameters of the "best" atom, p0, and the value of the scalar product 0

maxс ;  
2) to choose a vector λ containing the steps lengths for each of the vector parameters p0 

(it’s recommended to select half of the parameter sampling interval as a step λi for the 
parameter pi);  

3) k=1;  
4) to calculate the scalar products of each atom obtained by a combination of parameters 

from vectors pk-1 – λ, pk-1, pk-1 + λ and all its shifts with the signal, to determine the "best" 
atom, to remember its parameters pk and the value of the scalar product kсmax ; 

5) if pk = pk-1 then λ = 0.5 λ; 
6) if the required accuracy is not achieved ,1

maxmax  kk cс then k=k+1 and go to step 4 
else STOP. 

A stopping criterion was added to the algorithm together with the refining procedure. This 
criterion allows to reduce the experiment temporal cost because the algorithm "decides" itself 
when to stop instead of calculating the maximum number of iterations for each test signal. It 
reduces spatial costs. Significant atoms are remembered for each decomposition instead of 
storing a fixed number of atoms. And also the criterion improves the adaptive property of the 
algorithm. The number of atoms included in the decomposition directly depends on the 
complexity of the signal structure. 

 %.100%, 
Signal

R N
NN ERRlevelERR  (4) 

The value 5-10% of error level was chosen empirically. The required accuracy of 
approximation for geoacoustic signals containing separate pulse is achieved.  

The developed algorithm better adapts to local signal features and is more resistant to noise 
compared with the classical MP algorithm. Figure 1 shows the dependence graphs of 
approximation error on l0-norm for MP and AMP algorithms. 
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Fig. 1. Approximation error for MP and AMP algorithms. 

4 Choice of dictionary 
The second important task in modeling geoacoustic signals is the choice of a basic dictionary 
for research. The authors decided to use a combined dictionary consisting of different 
functions. The choice of the dictionary is devoted to the works [5,6,7]. 

First of all, Gaussian modulated functions having the less area of Heisenberg box and 
widely used in audio signal description models were included in the dictionary. This function 
can be described in the form 

     ,22),2cos(exp)( 2
lim endendend TtTfttTBAtg    (5) 

where A is the amplitude chosen in such a way that the atom is normalized ||g(t)||=1, A>0; Tend 
is the atom length; B = Blim ∙ ∆ is the parameter affecting the attenuation of the envelope curve, 
B>0; Blim is the critical value of parameter В, calculated in respect of Tend so that the pulse 
amplitude at the domain boundaries is not more than 5% of the maximum value  

 2lim

05.0ln4

endT
B 

 ; (6) 

f is fill frequency in Hz; ∆ is the gain of parameter B in respect of the critical value (Figure 2). 
The model should be composed of signals describing typical geoacoustic impulses by the 

above definition. Berlage pulse used in the modeling of seismic processes well describes the 
temporal form of the geoacoustic pulse from the different parametric equations (Fig. 2). 

Berlage pulse may be described as following analytic expression 
    .0),2sin(/),(exp)( maxmaxlim

),( maxlim
endend

tTn TtfttttTntAtg end     (7) 
where A is the amplitude chosen in such a way that the atom is normalized ||g(t)||=1, A>0; Tend 
– is the atom length; tmax is position of the envelope maximum value; n = nlim ∙ ∆ is the 
parameter affecting the attenuation of the envelope curve, n>0; nlim is the critical value of 
parameter n, calculated in respect of Tend and tmax so that the pulse amplitude at the domain 
boundaries is not more than 5% of the maximum value 
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f is fill frequency in Hz; ∆ is the gain of parameter n in respect of the critical value (Figure 2). 
The most probable ranges of values for the parameters pi (Tend, tmax, ∆ и f) for the proposed 

functions ];[ 0 end
ii pp were chosen empirically. 

 

Fig. 2. Berlage and Gabor pulses 

5 Model of geoacoustic signal 
On the basis of the above, detailed requirements regarding GAE signal model (1) were 
formulated by authors: 

1) functions gi belong to the linear normalized space L2(R);  
2) the system of functions Mii  1}{gDictionary  is redundant; 
3) gi are time shifted, modulated Gauss and Berlage pulses. Every atom is uniquely 

identified by and set of parameters p: frequency f; parameters influencing the pulse envelope 
shape: the type of function, n, B; 

4) the atoms are normalized .1ig  
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where gm are the atoms approximating the pulse, gn are the atoms approximating the parasitic 
component of pulse. Value N1 характеризует characterizes the complexity of the pulse 
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structure, N2 is the noise level of the pulse. The difference between the original function and 
the approximation error RN determines the goodness of decomposition to the signal. 

The coefficients α, β and the parameters of the functions p are identified by the Adaptive 
Matching Pursuit algorithm. Figure 3 shows the modeling of the real geoacoustic pulse. 

 
Fig. 3. Model of the real geoacoustic pulse 

6 Software development 
It was shown that the proposed algorithm is effective in modeling real signals. But high 
temporal cost of algorithm and a huge data amount continuously coming from registration 
points don’t allow real time processing and modeling of signals. 

The registration system records geoacoustic signals with a frequency 48 kHz in real time 
and stores them in 15-minute WAVE files. A large amount of computing resources is required 
to analyze the anomalies of a single file. At the first stage, the researcher must detect signal 
sections containing pulses, but it’s complicated by the short length and high noise level of 
pulses. Next, each detected segment is analyzed using the AMP algorithm. 

The automated system for processing GAE signals was developed to automate and 
accelerate the analysis process. It consists of two parts 

1) pulse detection and elimination of not informative signal segments; 
2) parallel realization of the algorithm AMP. 

6.1 Pulse detection 

It was decided to apply the threshold method for automatic pulse detection in a signal. The 
pulse is registered when the signal exceeds some predetermined threshold value.  
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6.1 Pulse detection 

It was decided to apply the threshold method for automatic pulse detection in a signal. The 
pulse is registered when the signal exceeds some predetermined threshold value.  

Most often, the detection threshold is a constant value and it is determined empirically. 
However, the high risk of losing informative data in this case: impulses below the specified 
threshold are not registered. But with a low thresholds and a strong noisy signal, a large 
amount of non-informative data can be extracted. 

An effective solution to this problem is using of an adaptive threshold, which 
automatically adjusts to the current noise level in the signal. The mean square deviation is 
used as the pulse detection parameter. Its calculation is carried out in non-intersecting 
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where sthk – threshold value in signal segment from k∙n to k∙n + n – 1, xi – discrete signal value 
at the i sample, μk – average signal in the window from k∙(n-1) to k∙n - 1, n – window length, A 
– experimentally determined parameter. 

The experiments proved that using of the adaptive threshold function makes it possible to 
detect single pulses in signals with different degrees of noisiness. However, when pulses are 
frequently followed at the signal segment, the threshold values can increase sharply, resulting 
in a loss of informative data (Figure 4a). 

Therefore, it is suggested to not include signal sections containing a pulse in the process of 
calculating the threshold function (Figure 4b). 

 
Fig. 4. Using an adaptive threshold to pulse detection in a signal 

6.2 Parallel realization of adaptive matching pursuit algorithm 

At the next stage, the system analyzes each detected pulse using the AMP algorithm. The most 
practical and cost-effective way to increase computing capability is the organization of parallel 
computing [8]. 

Let there be a dictionary consisting of M atoms with length of Lg samples, and a signal 
with length of L samples. The scalar product between Signal and each Dictionary line is 
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calculated and written into a C matrix of dimension M×(L+Lg-1) to determine the "best" 
dictionary atom (Figure 5): 
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Fig. 5. Serial realization of AMP algorithm 

The "best" atom is refined k times and stored in the output file. Figure 6 shows the scheme 
of the refinement procedure. The costliest part of the algorithm is the calculation of scalar 
products of dictionary atoms with the signal: matrix calculation time is more than 90% of the 
total algorithm execution time. 

The same type processing of a large amount of information makes it possible to apply data 
parallelism to this part of algorithm. Each subtask calculates one element of the covariance 
matrix, depending on the input parameters i and j. The proposed algorithm decomposition is 
suitable for efficient execution in the style of the architecture SIMD (Single Instruction stream 
/ Multiple Data stream), that allows to perform the same arithmetic operation on multiple data 
points simultaneously. One of the most popular technologies based on the SIMD concept is 
the software and hardware platform CUDA, used to organize parallel computing on graphics 
processors (GPU) [8]. The main part of the algorithm is executed on the central processor 
(CPU), but the costly process of calculating the covariance matrix is sent to GPU (Figure 7). 
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Fig. 6. Refinement procedure algorithm 

 
Fig. 7. Parallel realization of AMP algorithm 
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The signal and the atom dictionary are copied into the global memory of GPU. Next, a grid 
consisting of nb blocks of nt threads is run for execution. One thread computes one element of 
the covariance matrix and puts it in the shared memory of the block. After all threads of the 
block are executed, the shared memory contains an array of values that is copied to the 
resulting matrix C in the global memory. So each block fills the matrix C with nt elements. 

After the completion of all blocks, the resulting covariance matrix is unloaded to the CPU 
memory, and the algorithm execution returns to the central processor. The atom refinement 
algorithm also uses the GPU resources to calculate covariance matrices.  

7 Results 

The developed system for processing GAE signals is implemented in the Acoustic Research 
Laboratory IKIR FEB RAS. It runs on a computer that has Intel(R) Pentium(R) CPU G2120 
(3.10 GHz) and NVIDIA GeForce GTX 760 graphics card (1152 CUDA cores, 2258 Gflops). 
The system was tested on real geoacoustic signals with a frequency 48 kHz. The runtime of 
the serial and parallel AMP realization was measured for different lengths signal sections 
(Table 1).  

Table 1.  The runtime of the serial and parallel AMP realization 

Serial algorithm (ms) Parallel algorithm (ms) 

Number 
of atoms 

 
Pulse 
length 
(samples) 

1 5 10 

Number 
of atoms 

 
Pulse 
length 
(samples) 

1 5 10 

50 35 155 317 50 10 22 86 

100 110 542 1132 100 12 54 102 

200 420 2087 4252 200 16 86 166 

500 2532 12715 25297 500 46 268 496 

 
So using the parallel realization of adaptive matching pursuit algorithm allowed us to 

reduce the time costs by an average of 8 times. 
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1 5 10 

Number 
of atoms 

 
Pulse 
length 
(samples) 

1 5 10 

50 35 155 317 50 10 22 86 

100 110 542 1132 100 12 54 102 

200 420 2087 4252 200 16 86 166 

500 2532 12715 25297 500 46 268 496 

 
So using the parallel realization of adaptive matching pursuit algorithm allowed us to 

reduce the time costs by an average of 8 times. 
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