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Abstract. The results of prediction of geomagnetic indexes characterizing

the state of the Earth's magnetosphere obtained with the help of artificial

neural networks (ANN) for various prediction horizons are presented. The

forecasts are based on multivariate time series including the values of the

geomagnetic indices themselves, as well as data about the parameters of

solar wind and interplanetary magnetic field, during several latest hours. 

1 Introduction 

The Earth’s magnetosphere is one of the key space environment domains affected by solar
wind (SW). Magnetic storms are one of the main manifestations of space weather. The term
“space weather” is now accepted to understand the processes and phenomena occurring at
the Sun, in the solar wind, magnetosphere and ionosphere of the Earth, which can influence
the operation of airborne and groundbased technological systems, as well as the wellbeing
and health of people. Strong magnetic storms can cause disturbances in the operation of
telegraph lines and radio communications, pipelines, power lines and power networks [1].

Space weather effects upon the nearEarth environment are due to dynamic changes in
the “Sun – solar wind – Earth” chain. Experimental studies show that geomagnetic storms
have a significant impact on the nearEarth radiation environment, because after them the
flux of the relativistic electrons of Outer Radiation Belt of the Earth usually increases for an
order of magnitude or more (e.g. [2,3] and references therein). Extremely intense flux of
electrons  can  disrupt  operation  of  the  electronic  chips  of  equipment  located  on  board
spacecraft (e.g., [4]).

The main sources of disturbances of the Earth's magnetosphere are the coronal mass
ejections,  reaching  the  Earth's  orbit,  and  highspeed  streams  of  SW.  A necessary  (and
perhaps a sufficient) condition for the emergence of magnetic storms is the presence of the
south (negative) zcomponent of the interplanetary magnetic field (IMF Bz), which enables
the transfer of energy from the SW into the Earth’s magnetosphere [5]. So, for shortterm
prediction it is especially important to have operative information about the values of SW
and IMF parameters.

The level of geomagnetic disturbances is usually  estimated using geomagnetic indices 
Dst, Kp, Ap, AEAL (e.g. [1]).The Dst variation (Disturbance Stormtime variation) is an
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index  of  magnetic  activity  derived  from  the  network  of  nearequatorial  geomagnetic
observatories that measures the intensity of the globally symmetrical equatorial electrojet
(the "ring current"). It has been calculated at the World Data Center WDCC2 at Kyoto,
Japan  (Geomagnetic  Equatorial  Dst  index  Home  Page,  http://wdc.kugi.kyoto
u.ac.jp/dstdir/index.html) since the International Geophysical Year, 1957, using data from
four  observatories  at  low  to  midlatitudes;  its  hourly  values  are  available  online.  The
planetary 3hourrange index Kp is the mean standardized Kindex from 13 geomagnetic
observatories  between  44  degrees  and  60  degrees  northern  and  southern  geomagnetic
latitude. The scale is 0 to 9 expressed in thirds of a unit, e.g. 5 is 4 2/3, 5 is 5 and 5+ is 5
1/3. The 3hourly Ap (equivalent range) index is derived from the Kp index. The global
index  Kp  and  derivative  of  the  equivalent  amplitude  Ap  are  used  to  estimate  the
geomagnetic activity in the auroral zone as a whole.

There  are  several  different  methods  used  to  predict  Dst  index.  For  example,  Space
Research Institute from Russia provides an advance warning about the geomagnetic storm
magnitude: realtime predictions of the geomagnetic storm magnitude are updated every
hour  and  are  published  at  http://spaceweather.ru  [6].  The  project  of  University  of
California,  Berkeley  (http://sprg.ssl.berkeley.edu/dst_index/welcome.html)  produces  a
prediction of  Dst index one hour ahead using data from ACE spacecraft,  based  on the
modification of the empirical formula of Burton [7], using the same method as the above
mentioned studies  in the Space Research  Institute.  The Swedish Space Weather  Centre
(http://src.irf.se/en/forecasts/) predicts the next hourly value of the Dst index – one hour
forward in relation to the last entered data – using the recurrent Elman neural network. The
project  WINDMI RealTime Dst  and AL indices  provides  the Dst prediction,  which is
performed  using  a  physical  model  based  on  the  calculation  of  ring  currents  in  the
magnetosphereionosphere system, and which also uses as input the data from the ACE
spacecraft [8]. A modern model used to predict the Dst index one hour ahead proposed in
[9] is based on artificial neural networks (ANN) combined with an analytical model of the
SW– Earth’s magnetosphere interaction.

The authors of this paper have their own experience of the Dst index prediction using
scientific  models  based  on  ANN  technology  [1012],  as  well  as  experience  of  using
adaptive (including ANN) methods for prediction of electrons flux in the outer radiation
belt  of  the  Earth  [13].  It  was  shown that  the  best  quality  of  the  Dstindex  forecast  is
achieved when constructing a neural network model that uses both the history of the Dst
index and the parameters of the solar wind (its speed) and IMF (Bz component) as input
data [10]. The website of the Space Weather Analysis Center at SINP MSU provides online
prediction of Dst index 0.51.5 hours ahead by the parameters of SW and IMF measured by
the ACE spacecraft using ANN (http://swx.sinp.msu.ru/models/dst.php). 

However, one of the most urgent tasks of forecasting is forecast not for hours, but for a
longer period, at least for the day ahead. One of the possible options is the transition from
the  forecast  of  the  hourly  values  of  Kp  and Dst  to  the  forecast  of  daily  average  and
maximum values for the day.

The  present  paper  is  devoted  to  the  comparison  of  the  results  of  predicting  the
geomagnetic indices Dst, Kp and Ap with different horizons of the forecast among each
other and with trivial models.

2 Data Sources and Preparation

The input data usually used for Dst index prediction are the parameters of SW plasma and
of IMF, measured at the Earth’s orbit by available spacecraft, and the values of Dst index
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itself.  The data used in this study were obtained onboard ACE (Advanced Composition
Explorer) spacecraft (http://www.srl.caltech.edu/ACE).

Time series (TS) of hourly values of the following physical  quantities were used as
input for the neural networks: 

a) SW parameters in Lagrange point L1 between the Earth and the Sun: SW speed v
(measured in km/s) and SW protons density nP (measured in cm3).

b) IMF vector parameters in the same Lagrange point L1 (measured in nT): Bx, By, Bz
(IMF components in GSM system), and B magnitude (IMF modulus). 

c) Equatorial geomagnetic index Dst (measured in nT). 
The specific sources of data are listed elsewhere [12].
To account for possible daily and yearly variations of the Dst index, TS of sine and

cosine values with daily and yearly period were also used as input data. Delay embedding
of all TS for 24 hour depth was used to account for the previous history of input features.

In  the  forecasting,  the  SW  and  IMF  data  from  the  ACE  (Advanced  Composition
Explorer),  located  at  the  Lagrange  L1  point  obtained  by  the  SWEPAM  and  MAG
instruments, were used http://www.srl.caltech.edu/ACE/ASC/. We used not preprocessed
and cleanedup data of the second level, intended for scientific research, but operational
data. This is due to the fact that the forecasting system being developed is designed to work
in an online mode, in which the quality of the received data corresponds to the operational
data.

Due to the nature of the data transmitted from the spacecraft,  there are a significant
number of gaps in them. Delay embedding significantly increases the negative influence of
data gaps on data volume. Therefore, in this study we used filling of gaps 12 or less hours
long  by  linear  interpolation  (for  time  moments  when  the  gap  is  already  over)  or  by
extrapolation of the latest known value. Such method of gap filling is based on the fact that
rapid changes are not typical for virtually all kinds of data used. Also, there is no reason for
use of more sophisticated estimates.

As the working array, the data since October 22, 1997 (the beginning of data receipt
from ACE) until the end of 2016 was used. After delay embedding, the working array was
divided into training, validation and examination datasets.  The training set  was used to
adjust the weights during ANN training, the validation set for periodic validation in the
process of training in order to prevent overtraining, the examination set for independent
evaluation of the results. The data from November 1997 till the end of 2009 was used for
the training and validation sets, to which it was randomly split at the ratio of 75% to 25%.
The data for 20102016 was used as the examination set.

3 Architecture and parameters of ANN

The ANN architecture used in the present study was the multilayer perceptron (MLP). For
all neural  network models the results of which are presented in this paper,  a multilayer
perceptron with a single hidden layer of 16 neurons was used. Previous studies have shown
that using more layers and/or neurons does not lead to better predictive results. Logistic
transfer function was used for all neurons. ANN was trained with the error backpropagation
algorithm with learning rate of 0.01 and moment of 0.5. Training was terminated when
during 500 epochs the result of network operation on the validation set did not improve.

For  each  model,  5  networks  with various  sets  of  initial  weights  were  trained,  their
answers were averaged, and the assessments of the quality of the model were considered
for the averaged result. This approach means using the simplest committee of homogeneous
predictive models.
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To construct  neural  network models for  daily values,  several  architectures  of  neural
networks  were  used  in  this  study,  including  the  multilayer  perceptron  (MLP)  and  the
general  regression  neural  networks  (GRNN).  Statistical  indexes  of  the  quality  of  the
constructed  models  for  different  architectures  and  learning  algorithms turned  out  to  be
approximately the same. For predictions of the daily average values, the results obtained
using NeuroShell Predictor software from the American company Ward Systems Group,
Inc. [14] will be presented below. This package uses the original amorphous neural network
architecture  TurboProp2  based  on  the  wellknown  cascade  correlation  algorithm  [15],
which  adaptively  selects  the  optimal  complexity  and  optimal  structure  of  connections
among neurons in the process of learning. This architecture is characterized by extremely
fast learning compared to other architectures, with a comparable quality of results.

All the parameters of the neural networks during the computational experiments were
fixed,  as  well  as  the  separation  of  data  patterns  between  the  training  sample  (from
November 1997 to the end of 2009) and the examination set (independent data, from start
of 2010 to the end of 2016), which was used to compare the quality of the obtained neural
network models. Only the sets of variables the values of which were used as input data
were changed, which permits us to state that the observed effects are related exclusively to
which  physical  variables  and  with  what  time  delays  affect  the  formation  of  the  daily
average value of the geomagnetic indexes.

4 Results and discussion 

To  assess  and  compare  the  quality  of  models,  the  following  statistical  indexes
characterizing  the  deviation  of  the  prediction  from  the  real  values  of  the  predicted
quantities were used in this study: the multiple determination coefficient R2 (R squared), the
root mean squared error (RMSE), the correlation coefficient(r).

Fig. 1  displays  the  values  of  multiple  determination  coefficient  R2 and  correlation
coefficient  r as functions of prediction horizon (from 1 to 12 hours) for the average of
predictions  of  5  ANN  with  various  sets  of  initial  weights,  and  for  the  trivial  models
(prediction=latest  value),  for  Dst  and  Kp  indexes.  For  Kp  index,  its  integer  10fold
multiplied value Kp·10 was used as is often done for the convenience of writing fractional
values of the index.

a) b)

Fig. 1. Multiple determination coefficient R2 and correlation coefficient (r) for Dst and Kp indexes vs 

prediction horizon in hours, for ANN and trivial models
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Fig. 2 displays the values of root mean squared error (RMSE) for Dst and Kp indexes as
a function of prediction horizon for the average of predictions of 5 ANN with various sets
of initial weights, and for the trivial models.

Fig. 2. Root mean squared error (RMSE) for Dst and Kp vs prediction horizon in hours, for ANN and

trivial models.

Figures 1 and 2 show that the quality of ANN prediction, as expected, decreases with
increasing prediction horizon for both geomagnetic indexes.  It  can be seen that  sharper
decrease  is  observed  for  Kp.  If  we  compare  the  results  obtained  for  geomagnetic
coefficients  for  different  horizons  with  the  same dependence  for  the  prediction  of  the
electron fluxes of the outer Earth’s Radiation belt (ERB) [13], we see that the quality of the
electron flux prediction decreases with  prediction horizon increasing from 1 to 12 hours
slower than that for the predictions of Dst and Kp. This fact  allows suggesting that the
characteristic  time  for  the  development  of  processes  in  the  Earth's  magnetosphere  that
affect the electron flux of ERB is much larger than the characteristic time of the processes
of development of a geomagnetic disturbance. 

To confirm this hypothesis, one more goal of this paper was to obtain predictions for
one day ahead for the daily average values of Kp and Ap indices, as well as for the daily
maximum of the Dst amplitude (since the average daily value of the Dstindex has no
physical meaning).

Table 1 displays the values of the same statistical indexes as were shown in Fig. 1,2 -

the coefficient  of  multiple determination  R2,  the root-mean-square error  RMSE and the

correlation coefficient r, obtained for the predictions of daily average geomagnetic indices

Kp·10 and Ap, and of the Dst index daily maximum amplitude one day ahead, obtained

with the help of the ANN model and the trivial model, which repeats the value measured for

the previous day ("tomorrow as today"). From Table 1 it can be seen that best predicted is
daily average Kp index, and worst of all, the daily average Ap index. The ANN models
give better results than the trivial models. This is especially clear for R2. 

Table 1. Statistical indexes for prediction of daily average values of Kp·10 and Ap and of

daily maximum Dst amplitude one day ahead obtained with ANN and trivial models

R2 RMSE r R2 RMSE r

ANN model Trivial model

Kp 0.52 7.9 0.72 0.15 9.4 0.57

Dst 0.47 4.5 0.68 0.16 18.9 0.58

Ap 0.28 7.5 0.54 -0.09 9.2 0.46
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Since the daily average Kpindex is a generally accepted index of the daily state of the
Earth’s magnetosphere, further attempts to improve the prediction have been made for it.
Figures 3 and 4 show examples of the time series of the daily average Kp index (multiplied
by 10), measured and predicted one day ahead by two different ANNs, from April 30 to
September 2, 2015, and from May 9 to July 31, 2016, respectively.

Fig. 3. An example of the predictions of the time series of daily average Kp-index one day ahead

from April 30 to September 2, 2015 and their comparison with the measured values.

To construct  the neural  network model ANN1, the following 82 input features  were
used:  sine  and  cosine  values  with  one  year  period,  current  and  prior  values  for  the
preceding  7  days  (“rectangular”  embedding  of  the  multivariate  time  series)  for  the
following quantities: daily minimum Dst index value, daily average and daily maximum Kp
index values, daily average Ap index value, daily maximum and daily average values of the
modulus of the IMF vector |B|, daily maximum absolute value of the IMF Bz component in
the GSM system, daily average and daily maximum values of SW velocity v, and daily
maximum SW density np. For the ANN2 model, the data was extended with the values of
the same quantities, obtained at the previous turn of the Sun, 25, 26, and 27 days ago (to
take into account the recurrence of solar wind fluxes from coronal holes).

Fig. 4. An example of the predictions of the time series of daily average Kp-index one day ahead

from May 9 to July 31, 2016 and their comparison with the measured values.

Figures 3 and 4 show that taking into account the data from the preceding rotation of the
Sun brought some improvement, although it was not very significant. Further attempts to
improve the prediction by adding data on the sunspot number (with the help of this it was
planned to indirectly take into account the influence of the coronal mass ejections) and the
ULF index of the IMF, did not lead to any noticeable extra improvement. The comparison
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Figures 3 and 4 show that taking into account the data from the preceding rotation of the
Sun brought some improvement, although it was not very significant. Further attempts to
improve the prediction by adding data on the sunspot number (with the help of this it was
planned to indirectly take into account the influence of the coronal mass ejections) and the
ULF index of the IMF, did not lead to any noticeable extra improvement. The comparison

of Figures 3 and 4 also shows that there is no clear dependence of the prediction quality on
the phase of the solar activity cycle for the periods under study.

5 Conclusion

The results of prediction of geomagnetic indexes Dst and Kp obtained with the help of
artificial neural networks (ANN) for various prediction horizons are presented. Forecasting
of the hourly values of Dst and Kp as well as of the average daily values of these indices is
based  on  the  history  of  the  values  of  the  indices  themselves  and  on  the  data  on  the
parameters of the solar wind and the interplanetary magnetic field and their prehistory. It is
shown that with the increase of the forecasting horizon, the quality of prediction decreases
quite rapidly, especially for Kp index. This fact can be explained by the characteristic time
of  development  of  processes  in  the  Earth's  magnetosphere  that  affect  the  geomagnetic
situation,  as  well  as  by  the  physical  differences  between  the  Dst  and  Kp indices.  The
direction of further research aimed at increasing the prediction horizon and improving the
quality of forecasting should be taking into account the intraday hourly dynamics of the
input parameters when predicting the daily average values of the geomagnetic indices.

This study was performed at the expense of the Russian Science Foundation, grant no. 161700098. 
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