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Abstract. The model of radon transfer is considered in a porous ground layer of finite
power. With the help of the Laplace integral transformation, a numerical solution of this
model is obtained which is based on the construction of a generalized quadrature formula
of the highest degree of accuracy for the transition to the original - the function of solving
this problem. The calculated curves are constructed and investigated depending on the
diffusion and advection coefficients.The work was a mathematical model that describes
the effect of the sliding attachment (stick-slip), taking into account hereditarity. This
model can be regarded as a mechanical model of earthquake preparation. For such a
model was proposed explicit finite- difference scheme, on which were built the waveform
and phase trajectories hereditarity effect of stick-slip.

1 Introduction

Mathematical modeling of radon (222Rn) transfer processes is an actual problem due to various appli-
cations. One of such applications is the study of precursors of strong earthquakes with the aim of their
possible prediction [1, 2]. In these papers, it is shown that radon is an indicator of the stress-strain
state of the geomedium and its responses are observed into the field of subground radon in the form
of various anomalies.

Mathematical modeling of radon transfer processes is considered within the framework of the em-
anation method, which is described in detail in [3, 4]. As a rule, the main contribution to the transport
mechanism of Rn is made by the diffusion and advection processes, however, the migration capacity
of Rn is influenced by meteorological conditions, groundwater discharge, effusion, geological param-
eters and properties of the geomedium, etc. [3, 5]. Therefore, the mathematical model of the transfer
of Rn in the geo-environment is adopted with some assumptions.

In this paper, we will assume that the non-stationary transfer of Rn occurs in a homogeneous
layer of porous ground only due to the diffusion-advection mechanism, and we also assume that
the influence of meteorological conditions on the transport process Rn is insignificant and can be
neglected. Consider the following problems.
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2 Statement of the problem and methods of solution

The first we consider the problem in the case when the nonstationary transfer of Rn occurs in a
homogeneous layer of porous ground with infinite power.

Problem 1. There is an emanating homogeneous layer of ground of infinite power with free
emanation Rn. It is required to find the diffusion-advective distribution of radon volume activity (VA
Rn) A (z, t) in time t and spatial coordinate z [3].

Mathematical model of this problem:

∂A (z, t)
∂t

= D
∂2A (z, t)
∂z2 + v

∂A (z, t)
∂z

− λ (A (z, t) − A∞) , (1)

1) z = 0, A = 0, 2) z→ ∞, A = A∞, 3) t = 0, A = A∞, (2)

where D - diffusion coefficient Rn into the ground, m2/s; v - Rn advection speed into the ground, m/s;
λ - decay constant Rn, 1/c; A∞ = emARaρs (1 − η) - volume activity of radon, which is in radioactive
equilibrium with radium (226Ra) to a certain depth;; Kem - emanation Coefficient Rn, in relative units;
ARa - Specific activity 226Ra, Bq/kg; ρs -density of solid ground particles, kg/m3; η – porosity, in
relative units.

Using the integral Laplace transform and the initial condition 3, problem (1) - (2) can be written
for the image F (z, p) as follows:

D
d2F (z, p)

dz2 + v
dF (z, p)

dz
− (p + λ) F (z, p) − A∞ (p + λ)

p
= 0, (3)

1) z = 0, F = 0, 2) z→ ∞, F = A∞
p
. (4)

The solution of equation (1) can be written:

F (z, p) = C1 exp

z
−
v

2D
+

√
λ + p

D
+
v2

4D2


 +C2 exp

−z


v

2D
+

√
λ + p

D
+
v2

4D2


 +

A∞
p

(5)

where C1,C2 – constants of integration, which are determined from the conditions (4). Taking account
this condition, solution (5) has the form:

F (z, p) =
A∞
p

1 − exp

−z


v

2D
+

√
λ + p

D
+
v2

4D2



 , (6)

Turning to the original for (6), using the reference [6], we obtain:

A (z, t) = A∞

(
1 − 1

2

(
ez−er f c

(
u−
)
+ ez+er f c

(
u+
)))
,

z− = z


v

2D
−
√
λ

D
+

(
v

2D

)2 , z+ = z
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+

√
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2D

)2 , (7)

u− =
z

2
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√(
v2

4D
+ λ

)
t, u+ =

z

2
√

Dt
+

√(
v2

4D
+ λ

)
t,

er f c (z) = 1 − er f (z) , er f (z) =
2
√
π

z∫

0

e−z2
dz.
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Solution (7) is given and studied in [7], but for a two-layer ground-atmosphere model. The case
v = 0 is given in [3].

Noted, that in the case of transfer of Rn in a layer of infinite power, due to the second condition
(4), the problem of image reversal is simplified. Let us consider a somewhat different problem.

Problem 2. There is an emanating homogeneous layer of ground with a thickness l of free em-
anation. It is required to find the diffusion-advective distribution of radon volume activity A (z, t) in
time and space.

∂A (z, t)
∂t

= D
∂2A (z, t)
∂z2 + v

∂A (z, t)
∂z

− λ (A (z, t) − A∞) , 0 < z < l. (8)

1) z = 0, A = 0, 2) z = l, A = A∞, 3) t = 0, A = A∞. (9)

or into the image F (z, p):

D
d2F (z, p)

dz2 + v
dF (z, p)

dz
− (p + λ) F (z, p) − A∞ (p + λ)

p
= 0, (10)

1) z = 0, F = 0, 2) z = l, F =
A∞
p
. (11)

The solution of equation (10) coincides with the solution of (3), and, taking into account conditions
(11), it can be written as:

F (z, p) =
A∞
p


1 +

exp
(
− zv

2D

)
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√
λ + p

D
+
v2

4D2
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l
√
λ + p

D
+
v2

4D2
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
, (12)

sinh (z) =
exp (z) − exp (−z)

2
- hyperbolic sine.

We note the solution for the image (12) in the limit l → ∞tends to the solution for the image (6).
For the image (12), there is no tabular transition to the original, even if it can be reduced to tabular
form, the original will be expressed in terms of integrals from the theta-function [6], which makes it
difficult to visualize the solution.

For the inversion (12), we use the numerical method for constructing the generalized quadrature
formula of the highest degree of accuracy (GQFHDA), proposed in [8]. The GQFHDA method can
be written as follows for the inversion formula:

f (t) =
1

2πi

c+i∞∫

c−i∞

F (p) eptdp =
ts−1

2πi

c+i∞∫

c−i∞

p−sϕs (p/t) epdp, c > 0,

a quadrature formula of the form is constructed:

ts−1

2πi

c+i∞∫

c−i∞

p−sϕs (p) epdp ≈
n∑

k=1

Akϕs (pk), (13)

Ak, pk – coefficients and nodes of the quadrature formula, ϕs (p) = psF (p). Next, we introduce a
positive number a. Region of regularity of the function ϕs (p) we choose any pair wise distinct points

3

E3S Web of Conferences 20, 03004 (2017)	 DOI: 10.1051/e3sconf/20172003004
Solar-Terrestrial Relations and Physics of Earthquake Precursors



pk, k = 1, ..., n and we require that the quadrature formula (13) is exact for the function ϕs (p) =
p−am,m = 0, 1, ..., n − 1, which is equivalent to the fulfillment of the relations:

n∑
k=1

Ak p−am
k =

1
Γ (s + am)

,m = 0, 1, ..., n − 1. (14)

Note that the numbers p−a
k are the roots of the polynomial ωn (x) =

n∏
k=1

(
x − p−a

k

)
which are

uniquely determined by virtue of orthogonality:

ts−1

2πi

c+i∞∫

c−i∞

p−sϕn
(
p−a) p−amdp = 0,m = 0, 1, ..., n − 1. (15)

For example, if the polynomial ωn (x) is written as: ωn (x) = xn + b1xn−1 + ... + bn,
Then the orthogonality condition with respect to the coefficients is equivalent to the system of

equations:

b1

Γ (s + (n + k − 1) a)
+ ... +

bn

Γ (s + ka)
= − 1
Γ (s + (n + k) a)

, k = 0, 1, ..., n − 1. (16)

Noted that the polynomial ωn (x) exists and is uniquely determined. Algorithm for building
GQFHDA contains the following stages:

1. the calculation of the coefficients of the equations systems (16) with respect to unknowns bk

and the solution of this system;

2. finding the nodes pk of the quadrature formula from equation (15): ωn

(
p−a

k

)
= p−an

k +b1 p−a(n−1)
k +

... + bn = 0;

3. finding the coefficients Ak of the quadrature formula from the conditions (14). In [8] a theorem
is proved whose result is an estimate for the error εn (ta) of the GQFHDA for any t > 0:

|εn (ta)| ≤ Mσn (ta, ρ) ,M =


1

2πi

2π∫

0

∣∣∣Pas
(
1 + ρ exp (iθ)

)∣∣∣2dθ



1/2

, Pas = ϕs

(
t−1/a
)
, (17)

σn (ta, ρ) =


∞∑

m=2n

∣∣∣∣∣∣∣∣
m∑

j=2n

(
m
j

)
(−1) j

Γ (s + a j)
−

n∑
k=1

Ak

(
1 − p−a

k

)m
∣∣∣∣∣∣∣∣

2(
ta

ρ

)2m


1/2

, ta < ρ ≤ ta + r.

r - radius of a circle .

3 Results of modeling

Consider the solution of problem 2 depending on the different values of the diffusion D and advection
v coefficients for the following values of the parameters: A∞ = 1000 Bq/m3; λ = 2.1 · 10−6c−1; l =
100cm.

For the algorithm GQFHDA: a = 0.5, s = −1,m = 100, n = 20.
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Consider the solution of problem 2 depending on the different values of the diffusion D and advection
v coefficients for the following values of the parameters: A∞ = 1000 Bq/m3; λ = 2.1 · 10−6c−1; l =
100cm.

For the algorithm GQFHDA: a = 0.5, s = −1,m = 100, n = 20.

Figure 1. Calculated curves of the distribution of Rn into the ground in depth: a) z ∈ [0, 100] at a fixed time
moment t = 107 c :curve 1 - v = 10−6 cm/s, D = 5 · 10−4 cm2/s; curve 2 - v = 5 · 10−5 cm/s, cm2/s; curve 3 - cm/s,
- cm2/s; b) z = 5cm: curve 1 - cm/s, D = 5 · 10−4cm2/s; curve 2 - cm/s, D = 2.5 · 10−4cm2/s; Curve 3 - cm/s, -
cm2/s

In Fig. 1a shows the calculated curves of the distribution of Rn into the ground in depth , depend-
ing on the values of the diffusion and advection coefficients for a fixed time c. It is seen that as the
value of the advection coefficient increases, the migration capacity of Rn increases, (curve 3). This is
manifested by a rapid exit to the background level A∞ at shallow depths .

In Fig. 1b shows the calculated curves of Rn distributions into the ground as a function of time
t ∈ [0, 2.31] at the point z = 5 cm. It is seen that as the value of the advection coefficient increases, the
concentration of Rn at a point decreases more rapidly (curve 3), i.e. faster goes to stationary mode.

These results show that taking into account the advective component is important in modeling the
migration of Rn [9]. The diffusion and advection coefficients can be estimated using experimental
data [10] or tables [3].

Noted that the error of the GQFHDA method by formula (17) was, which indicates an increased
accuracy of the quadrature formula (13).

4 Conclusion

In [11, 12], using georadar studies, it was established that the registration points have a layered struc-
ture, with two or even three layers clearly identified. Each layer has its own physico-geological param-
eters. Therefore, problem 2 can be generalized to the case of a two-layer or three-layer geomedium.
Of course, the consideration of the properties of the geomedium, namely, the in homogeneity, which
can be expressed, for example, by fractal properties [13] or a piecewise-constant anisotropic layered
structure with inclusions, deserves close attention [14]. Such problems will be solved by numerical
methods as in [15].

5

E3S Web of Conferences 20, 03004 (2017)	 DOI: 10.1051/e3sconf/20172003004
Solar-Terrestrial Relations and Physics of Earthquake Precursors



Acknowledgments
The paper on the order of RFFI grant No. 16-05-00162 "Presentation of strong earthquakes into the 
field of subground radon in the Petropavlovsk-Kamchatka geodynamic test range".

References

[1] V.P. Rudakov, J. Geokhim. 9 (1986)
[2] P.P. Firstov , V.P. Rudakov, J. Vulk. i seysm. 6 (2002)
[3] G.F. Novikov Radiometricheskaya razvedka (Leningrad, Nedra, 1989)
[4] R.I. Parovik Matematicheskiye modeli klassicheskoy teorii emanatsionnogo metoda

(Petropavlovsk-Kamchatskiy, KamGU im. Vitusa Beringa, 2014)
[5] V.S. Yakovleva, P.M. Nagorsky, A.G. Kondratyeva, N.V. Mishina The influence of meteoro-

logical parameters and other factors on soil radon dynamics. Innovative Technologies in En-
gineering VII International Scientific Practical Conference (Conference Proceedings. National
Research Tomsk Polytechnic University. 2016.)

[6] V.A. Ditkin, A.P. Prudnikov Spravochnik po operatsionnomu ischisleniyu (Moskva, Vysshaya
shkola, 1965).

[7] R.I. Parovik Vestnik KRAUNTS. Fiz.-mat. nauki 1, 1 (2010)
[8] T.A. Matveyeva Nekotoryye metody obrashcheniya preobrazovaniya Laplasa i ikh prilozheniya

(Diss. kand. fiz.-mat. nauk. Sankt-Peterburg. 2003).
[9] P.P. Firstov, R.I. Parovik, V.S. Yakovleva, O.P. Malysheva Svyaz’ skorosti advektsii i plotnosti

potoka radona s sil’nymi zemletryaseniyami yuzhnoy Kamchatki 2000-2008 gg. Solnechno-
zemnyye svyazi i predvestniki zemletryaseniy (Dal’nevostochnoye otdeleniye, Institut kos-
mofizicheskikh issledovaniy i rasprostraneniya radiovoln. 2010).

[10] V.S. Yakovleva Vestnik KRAUNTS. Fiz.-mat. nauki. 8, 1 (2014)
[11] P.P. Firstov, R.I.Parovik, R.R. Akbashev, Ye.O. Makarov Stroyeniye verkhney chasti geologich-

eskikh razrezov v punktakh monitoringa pochvennogo radona na petropavlovsk-kamchatskom
geodinamicheskom poligone. Vulkanizm i svyazannyye s nim protsessy (Materialy regional’noy
nauchnoy konferentsii, posvyashchonnoy Dnyu vulkanologa. 2014).

[12] P.P. Firstov, Ye.O. Makarov, S.Yu. Paskar’, R.I. Parovik ANRI 4 (87) (2016)
[13] R.I. Parovik, B.M. Shevtsov J. Math. Mod. and Comp. Sim. 2, 2 (2010)
[14] A.R. Nafikova , V.N. Krizskiy Matematicheskoye modelirovaniye protsessov perenosa radona

v kusochno-postoyannykh anizotropnykh sloistykh sredakh s vklyucheniyami (Sterlitamak:
BashGU, 2016)

[15] V.S. Yakovleva, R.I. Parovik Nukleonika 55, 4 (2010)

6

E3S Web of Conferences 20, 03004 (2017)	 DOI: 10.1051/e3sconf/20172003004
Solar-Terrestrial Relations and Physics of Earthquake Precursors


