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Abstract. Any mining operations influence stability of natural and tech-
nogenic massifs are the reason of emergence of the sources of differences 
of mechanical tension. These sources generate a quasistationary electric 
field with a Newtonian potential. The paper reviews the method of deter-
mining the shape and size of a flat source field with this kind of potential. 
This common problem meets in many fields of mining: geological explora-
tion mineral resources, ore deposits, control of mining by underground 
method, determining coal self-heating source, localization of the rock 
crack’s sources and other applied problems of practical physics. This prob-
lems are ill-posed and inverse and solved by converting to Fredholm-
Uryson integral equation of the first kind. This equation will be solved by 
A.N. Tikhonov regularization method. 

1 Introduction 
The problem of stability of natural and technogenic massifs is bound to definition of geome-
try of the center of differences of mechanical tension which is a source of a seismic event 
(SE). According to D. L. Anderson’s theory, the sources of SE is the some volume area of 
rocks surrounding the place of the arising gap and corresponding to a zone of nonreversible 
deformations and maximal differences of mechanical tension. In this definition gaps are vio-
lations of a structure of rocks. D. L. Anderson [1, 2] considers that in the massif of rocks there 
is a plane on which there are a gap and shift of blocks relatively each other. Let's consider that 
the plane has the form ellipse as at any explosive violation there has to be its attenuation to-
wards the periphery of a gap. Using harbingers of seismic events we can define various char-
acteristics of SE. In this article we shall use the electric harbingers of SE. 

The search for electric harbingers of SE (rock cracks, earthquake) has led to the beginning 
of the nineties of the last century, to the discovery of the mechanism of electrification of 
pockets the forthcoming SE at the stage of the avalanche – unstable fracturing, i.e. at the final 
stage of preparation. It was shown both theoretically and experimentally that each crack in the 
process of the emergence and rapid spread bears at its apex a charge of the same sign, when 
multiple their accumulation in the focus leads to a strong electrification of rocks and causes 
severe abnormalities in the electrical field in the atmosphere and on the surface of the earth. 
The definition of the shape and size of the area of electrification of rocks on measurements on 
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the earth's surface can serve as the basis of the forecast power of the impending seismic 
events and predict the time of occurrence of the event.  

The problem of definition of the shape of the area is the inverse ill-posed problems of 
mathematical physics. We can formulate this problem as Fredholm-Uryson integral equation 
of the first kind, which will be solved by A. N. Tikhonov regularization method [3-14]. 

2 Results and discussions  

2.1 Formulation and solution of the direct problem 

Let us assume that the natural electric field is generated by flat source arbitrary shape Sp 
which is inclined at an angle ]70;0[ 00  and located at a certain depth hzM   (Fig 1) or 

1zhzM   (Fig 2). We also assume that the sources containing space is homogeneous 
and isotropic with one (Fig 1) or two plane-parallel borders (Fig 2). 

          
 

Fig. 1, 2. The schemes of the containing space and flat field source   

The value of potential of such a source at an arbitrary measurement point M on the sur-
face will be determined by the general formula [13] 
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where SP – flat source of electric field; uM – the potential of point sources that determined 
by one of the two formulas (Fig 1 or Fig 2) 
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where )(0 mDJ  – Bessel function; 1

1212 )()( W  – the reflection coefficient 
of the second layer; 2,1  – electrical resistivity layers, (Om·m) 

22 )()( MPMP yyxxD  ; M – point of measurement of potential, P – the point 
located in the flat sources; q(k) – the coefficients of the approximation formula; C – the 
coefficient, which characterizes the intensity of the field. 

Since the source is located at an angle γ to the earth's surface, we will give the formula 
to calculate the coordinates of measuring points in the new system OXY  

 sincos MMM zxX ,  cossin MMM zxZ .  
For integration in the region Sp let us use the polar coordinate system  ,  where 

]2;0[  ,  )(;0 r  and  cosrX P ,  sinrYP . 

Additionally, let us turn to dimensionless quantities with formula whw  1 , where w 
are all linear parameter with dimension [m]. Further, for simplicity, we will not write a line 
above the letters. 

Thus, formula (1) will converts to  
 


2

0

)(

0

),( drrudU MM and with (2.1) and (2.2) 

then converts to 





)(

0

2

0
1

R
rdrdhСU M               or            

 



















2

0

)(

0

11

1
2 )( d

R
rdrkqhСU

k

M ,                       

(3) 
where ArBrR  2 ,    sincos2 MM YXB , 222

MMM ZYXA   for (Fig 1) 

and  222 )1(2  kZYXA MMM  for (Fig 2). The inner integral in (3) we can calcu-

late analytically: 
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Thus we have the Fredholm-Urysohn integral equation (IE) [3, 4] of the 1-st kind with 
unknown parameter )(  to determine the shape of the source field with the Newtonian 
potential 

 



2

0

)()(, MUdMK ,                                                                             (4) 

where K – nonlinear kernel of equation; U* – values of potential measured on the earth’s 
surface in the point M. 

2.2 Solution of the inverse problem 

The inverse problem is to determinate the function )(  if we know potential value on 
the earth’s surface. For the definition this function we consider the problem of finding the 
minimum of regularized functional of A.N. Tikhonov 
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where T – a measure of the error of measurement of the value of the potential; 
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In article [15] we assumed, that the measure of potential value is on a one-dimensional 

region ( 0My  for example) therefore, as the measure has been used the integral 
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)(,  where )(,( MxA  – non-linear integral direct 

modeling operator (3); U* – the right part of the IE (4), which in practice is set experimen-
tally, and for test problems is determined by solving a direct problem using formulas (3) 
with the addition of a random correction simulating inaccuracies in full-scale measure-
ments. 

In this article we will assume, that the measure of potential value will be on a two-
dimensional region therefore, as the measure has been used the sum
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We shall seek the minimum of the functional (5) by the method of conjugate gradients 
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2, ABR  )()(2  t – a fixed value of the argument φ, which defines the variable 
of differentiation )(t . 

3 Numerical realization 
Numerical realization the above formulas consists of the following aspects. 

The first is the numerical integration and differentiation functions in (5). For this we 

shall define the grid to the variable φ with step 
N
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The second is to calculate three coefficients: kq, q, α. To find the step of minimizing kq, 
we will use the "golden section" method for the objective function  Ik  . Numerical 
experiments have shown that this function is unimodal on the interval 0k . Since it is 
impossible in advance to determine the interval at which the minimum point is contained, 
we shall adhere to the algorithm described in [15]. To calculate the CG-coefficient q we 
can use one of the multiple existing formulas [16]. In this article we shall use  
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where ba   is the dot product [14]. To calculate coefficient α we shall use the iterative 
method [17] which is expressed in the formula   25,0

0 1  qq  where start value 
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0 10  [17]. 
The third is the test program. Let us consider a test region in the form ellipse the dimen-

sionless equation of which in the polar coordinate system has the form 
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where 50a , 15b , 150h  for Fig. 1 and 25h  meters for Fig. 2. The start region for 
(6) is the circle with the radius 40 m. To simulate errors in full-scale measurements, we will 
add a random correction to the potential value )5,0(  randUU ex , where rand are 
uniformly distributed numbers on the interval [0; 1], Uex – the exact calculated value of the 
potential according to the formula (3),  5,0;05,0 . 

We will show in Fig. 3, 4 the graphic result of restoration the shape of flat sources for 
Fig. 1 and Fig. 2. 

 

 
Fig. 3. Restoration of the area and potential value after 100 iterations CG-methods and 

05,0 . 
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Fig. 4. Restoration of the area and potential value after 150 iterations CG-methods. 

4 Conclusion 
Let's give practical recommendations on the using of the developed methodology some 
aspects of which was introduced in article [15]. A coordinate grid is constructed on the sur-
face with a step of about 25-50 meters. As we said above these values are used as the right 
part of  IE (4). Then we use the developed program, which removed the random additive. 
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