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Abstract. The article presents an algorithm for obtaining sensitivity models of the first and second orders 
of the steady-state regime of electric power systems (EPS). The sensitivity models are intended for express 
calculations of steady-state when estimating the static security of EPS. The use of sensitivity models allows 
one to simulate failures of EPS elements without calculating new steady-state. To verify the reliability of 
the sensitivity models obtained, the results of an experiment performed on a 3-node test pattern are 
presented. 

1 Introduction 
For minimize of the consequences of electrical 
equipment failures in electric power systems (EPS), it is 
necessary to made a set of specific actions, one of which 
is an operational estimation of the security of EPS. The 
security estimation of EPS is determine of the indicators 
that most fully characterize the current steady-state from 
the standpoint of opposing possible disturbances in EPS. 
Estimation of the security of EPS is technologically 
capacious and computationally expensive. There are the 
static and the dynamic security of EPS. In this paper, we 
describe static security. The estimation of a static 
security of EPS is based on the assumption that the 
transition of EPS to a new state due to an element failure 
is not accompanied by a violation of dynamic stability. 

When we estimate of security of EPS very important 
parameters are accuracy and time of the estimation, since 
the estimation should be carried out in real time. Various 
simplifications when we solve this problem can lead to 
distortion of the result and, ultimately, acceptance of a 
non-optimal or incorrect set of control actions. 

There are some approaches to the estimation of 
security of EPS. We can divide such approaches as the 
approach based on the application of the criterion n-i [1-
3], the machine-based approach [4], the Jacobi matrix 
based approach [5], In [6] to estimate the security of EPS 
using the Monte Carlo method. In most of the present 
approaches (methods), one of the main stages of 
estimation, and the most time-consuming expense, is the 
stage of modeling the effect of failures of power 
equipment on the EPS parameters or the calculation of 
steady-state of EPS at failures of its elements. When we 
estimate of security of EPS, it is necessary to analyze 
single and group failures of EPS elements in a minimal 
time. EPS consists of a many of elements, the number of 
possible states is large. In this paper, we study the 
problems of accelerating the calculation of steady-state 

of such steady-states of EPS. We propose to use steady-
state sensitivity models or to replace the exact model of 
calculating of steady-state of EPS by its approximation. 

Models of first-order sensitivity of steady-state of 
EPS are used in solve deferent electric power problems, 
among them one can single out the problem of analysis 
of voltage stability of EPS [7]. In [8] the first-order 
sensitivity models (matrices) are used to calculate the 
steady-state of EPS when to change the reactive power at 
the nodes of the EPS. So, in [7], [8], using the models of 
the first-order sensitivities, linearly approximate the 
steady-state and search for the steady-state parameters of 
the EPS during the introduction of the perturbation. The 
aim of this paper is to obtain sensitivity models of not 
only the first, but also the second order for the rapid 
calculation of the steady-state of the EPS. Models of 
second-order sensitivity give a quadratic approximation 
to the new steady-state point, which increases the 
accuracy of calculating the steady-state and, accordingly, 
the accuracy of the estimation of the security of EPS. 

2 Formation of sensitivity models of the 
steady-state of electric power systems  

The steady-state of EPS can be described by a vector 
equation of the form [9]: 

                                ,0)V,X(W =     (1) 

where: W  – vector-function, →G:W ℂ 1-mn+ , ⊆G  ℂ
1-mn+ ; X – vector of input parameters of the EPS steady-

state, ∈X ℂ n  ; V  – vector of output parameters of the 
EPS steady-state,  ∈V  ℂ 1-m  ,  – number of power lines 
of EPS; n  – number of nodes of EPS. 

When we deal estimate of security of EPS, we should 
to find the dependencies of some parameters on others, 
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and the set of input and output parameters is not known 
in advance. 

In accordance with the implicit function theorem [10] 
for Banach spaces [11], to which the space of complex 
numbers ℂ, which characterize the parameters of steady-
state operation of EPS, if the mapping →O:W ℂ 1-mn+ , 
defined in the neighborhood of the O  point ∈)v,x( 00 ℂ

1-mn+ , ∈x ℂ n , ∈v ℂ -1m , such is that 
1. ∈W ℂ )1( ( O ,ℂ n ) (vector function is continuously 

differentiable), 
2. 0)v,x(W 00 =  (the equation has a solution at the 

point )v,x( 00 ), 
3. )v,x(W 00v′ – reversible matrix, 

then, for any point from the neighborhood )v,x( 00  

                           )x(fv0)v,x(W =⇔=    

        ))],x(f,x(W[))]x(f,x(W[)x(f x
1

v ′′-=′ -   (2) 

The expression (2) is first-order sensitivity matrix of 
steady-state EPS [12-14]. To determine the change in the 
vector of output variables v  relative to the vector of the 
input variables x , it is necessary to find the 
corresponding sensitivity matrix or differential in 
accordance with relation (2). 

Let’s write the system of steady-state equations in the 
vector form to obtain the sensitivity models. 

                                  ,S)U~(IA 1-=   (3.a) 

                                    ,IY~UA 1-T =   (3.b) 

where: A is the incidence matrix of an EPS graph with 
size of nmЧ ; A is the truncated incidence matrix by the 
basis node; I  is a vector that composed of the 
components which are the power flows along the power 
transmission lines of EPS, ∈I ℂ n ; S  is the vector 
whose components are the power in the nodes of EPS 
(the residual between generation and demands) ∈S ℂ 1-m

; U  is a vector that composed of the components which 
are the nodes voltage of EPS, ∈U ℂ 1-m ; U~ is a diagonal 
matrix with 1-m  order of the EPS nodes voltage; Y~  is 
a diagonal matrix with n  order of EPS lines 
conductivity. 

The system (3.a), (3.b) will be called as the initial 
model. This record of the vector equations system of 
EPS steady-states is not complete, because of these 
equations are nonlinear and there are solution set that 
appear in case of the solution this system. For example 
in determining the voltages in EPS nodes, the number of 
solutions is 2m-1. Therefore, to make the system with a 
single solution, it is necessary to supplement this system 
of equations by an additional condition: 

                                  .0URe >   (4) 

Moreover, to obtain a sensitivity model of 1st 
dimension the vector equations system (3) should be 
differentiated by variable that change own value during 
the process of reliability assessment. This variable 
depend on current problem. It is worth to be noting that 
the EPS elements failures and random deviations of 
consumers demand are simulating during the process of 
the system reliability assessment. Hence, it is required to 
differentiate the system (3.a), (3.b) by the Y  (vector of 
lines conductivity) for the EPS lines failure simulating 
(modeling) and by S  for the simulating (modeling) of 
random deviations of consumers demand and failures of 
generating blocks. In this work we will focused on the 
differentiation by Y . With the aim of uniquely defined 
the differentials IdY  (differential of I  vector by Y  
variable) and UdY (differential of U  vector by Y  

variable) it is necessary to fix the diagonal matrix U~  at 
the solution point, before differentiation of the vector 
equations system (3.a), (3.b). The values of voltages in 
nodes will be located on the diagonal of this matrix. 
on the right-hand side. 

                                  ,0IdA Y =   (5.a) 

                  ,IdY~IY~)Y~d(Y~-UdA Y
1-1-1-

Y
T +=   (5.b) 

where: ∈IdY ℂ n ; ∈Y~d ℂ n ; ∈UdY ℂ 1-m .  
The differentiation of the inverse matrix function was 

carried out according to [15]: .Y~Y~dY~-)Y~(d 1-1-1- =  
Next, let us convey from equation (5.b): 

on the right-hand side. 

                         .IY~)Y~d(UdAY~Id 1-
Y

T
Y +=   (6) 

Replace the IdY  from (6) to (5.а): 

                        IY~)Y~d(A-UdAY~A 1-
Y

T = ,  (7) 

as follows from (7) equation we will take: 

dYI~Y~A)AY~A(-IY~)Y~d(A)AY~A(-Ud 1-1-T1-1-T
Y == ,(8) 

Where I~  is the diagonal matrix, where the power 
flows along the power transmission lines of EPS located 
on the diagonal, ∈I ℂ n . 

The matrix permutation was carried out in the 
mathematical expression (8) that is possible for diagonal 
matrices. 

The linearized dependence of the voltages in the 
nodes of the EPS on the conductivities change in the 
elements of the EPS can be represented in the form 

UdUU Y0 +≈ , where 0U  is a column vector whose 
components are values of the voltages in the nodes of the 
EPS at the solution point 1-m

0 CU ∈ .  The column vector 
YΔ will be used instead dY for defining the differential 
UdY . That column vector composed of the components 
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which are increments of the conductivities on the 
corresponding lines nCYΔ ∈ . 

Let’s substitute UdY  (8) into (6) for to get IdY
.Then 

          .IY~Y~dIY~)Y~d(A)AY~A(AY~Id 1-1-1-TT
Y +=   (9) 

The linearized dependence of the change of power 
flows along the EPS  power transmission lines with 
depending on conductivities change can be represented 
and look like IdII Y0 +≈ , where 0I  is column vector, 
whose components are of power flow values along the 
power transmission lines in the solving point, 

n
0 CI ∈ . 

Besides, to get the sensitivity models of 2nd order it is 
necessary to get the second differentials. Hence, the first 
differentials (8) and (9) must be differentiated. In 
summary, the second order differentials will have the 
next form: 

        ,dYY~I~A)AY~A(AY~dA)AY~A(2Ud 1-1-TT1-T2
YY =   (10) 

             .dYY~dI~Y~-UdAY~UdAY~dId 2-2
YY

T
Y

T2
YY +=   (11) 

In this case the 2nd order sensitivity models, namely 
the dependence of voltage in EPS nodes on conductivity 
change in EPS elements can be represent as: 

Ud2
1UdUU 2

YYY0 ++≈ , the dependence of power 
flows along the EPS power transmission lines on EPS 
elements conductivity change could be can be represent 

as:  Id2
1IdII 2

YYY0 ++≈ . 
In event of EPS lines failure the disturbance of 

voltages and streams along the power transmission lines 
of EPS will be determined as follows: 

                           ,Ud
2
1

UdUΔ 2
YYYYY +≈   (12) 

                           Id
2
1

IdIΔ 2
YYYYY +≈   (13) 

where: UΔYY  is a vector of voltages change in EPS 
nodes, 1mCUΔ -∈ , IΔYY  is a vector of EPS power flows 

change, nCIΔ ∈ . 
Thus, vector YΔ that characterizes the values of 

conductivities that equivalent to switching off the 
transmission line in equations (8-13) remains undefined. 
However, the conductivity iY  power transmitting line i  
has a definite value during the normal functioning. In 
case of power transmission line i  failure the value of its 
conductivity become equal 0, ii YΔY0 += . In summary 
the value of conductivity that equivalent of power 
transmission line i  disconnections will be defined as: 

                               iii Y-Y-0YΔ ==   (14) 

During the use sensitive models for the steady-states 
of EPS calculation by one iteration it is possible to get 

the vector of voltage changes in EPS nodes in case of 
single and non-single disconnections of power 
transmission lines. It could be done if represent the YΔ
as a matrix Y~Δ  (instead vector) with size nnЧ  and 
values of iY-  by the main diagonal, of course if it is 
necessary to get the assessment of single failures of EPS 
power transmission lines, and other zero elements. If the 
assessment of multiple failures required then it is 
necessary to fill matrix Y~Δ  in a certain way. 
preparing them. 

3 Case study 
The sensitivity models of the first and second orders 
applications are demonstrated for steady state calculation 
of the three-node EPS test scheme shown in fig.1. The 
experiment includes power line I capacity changing, with 
its final shutdown. 

 
Fig. 1. EPS test scheme. 

The main characteristics of EPS necessary for steady 
state calculation are shown in table 1. 

Table 1. The initial data of the investigated EPS. 

Power 
line 

Impedance, 
Ω Node Load, 

MVA 
Voltage, 

kV 

I 12,1+ i43,5 1 0 220,0+ i0 

II 12,1+ i43,5 2 329,0- 
i114,0 - 

III 12,1+ i43,5 3 669,0- 
i173,0 - 

As a result of the steady-state calculation of the 
initial model (3.a), (3.b), the following voltages: 2U  = 
234,94 - i7,73 kV; 3U  = 213,67 - i71,69 kV, and power 
lines flows: 12I  = 0,08 + i0,36 kA, 13I  = 1,57 + i0,29 
kA, 23I  = 1,49 - i0,07 kA were obtained at the nodes of 
the EPS. 

Further, the voltages at nodes 2 and 3 were 
determined using the obtained sensitivity models of the 
first and second orders for taken power line I capacity 
perturbations increments. In table 2 calculation results 
are demonstrated when power line I capacity changing 
on the levels: 1; 5; 9; 34; 48; 67; 86; 90; 95 % of the 
initial power line capacity. Calculation result when 
power line I is disabled (capacity perturbation is 100%) 
is shown in the last row of table 2. 

E3S Web of Conferences 25, 03001 (2017)	 DOI: 10.1051/e3sconf/20172503001
RSES 2017

3



 

 

Table 2. Voltage deviation in test scheme nodes on power lines I-II capacity perturbation. 

 

Graphical interpretation of the results is shown on the 
fig.2, namely the values of the real part of the voltage in 
the second node. The values of the imaginary part of the 
voltage in the second node are shown on the fig.3. Fig. 4 
and 5 show similarly values for third node. 

 
Fig. 2. The values of the real part of the voltage in the second 
node. 

 

 
Fig. 3. The values of the imaginary part of the voltage in the 
second node. 

 

 

Power line capacity 
perturbation 

 

U (init.mod.), kV    

2U =                   

3U = 

UΔY , kV 

2YUΔ =

3YUΔ = 

U (lin.mod.), kV             

2U =             3U
= 

UΔYY , kV  

2YYUΔ = 

3YYUΔ =
 

U (quad.mod.), kV  

2U =             3U
=

 % of 
initial.  

absolute value 
 

1% -5,87*10-5 + 
i2,11*10-4 

235,02 - i7,78 

213,72 - i71,7 

0,1 - i0,05 

0,05 - i0,03 

235,04- i7,78 

213,72 - i71,72 

0,13 - 0,06i 

0,06 - 0,03i 

235,17 -7.81i 

213,75 -71,73i 

5% -2,83*10-4 + 
i0,10*10-2 

235,32 - i8,08 

213,89 - i71,8 

0,47 - i0,25 

0,24 - i0,12 

235,41- i7,98 

213,91 - i71,81 

0,6 - 0,31i 

0,3 - 0,16i 

235,72 -8.13i 

214,06 -71,89i 

9% -5,4*10-4 + 
i0,19*10-2 

235,75- i8,22 

214,1 - i71,81 

0,91 - i0,47 

0,45 - i0,23 

235,85 - i8,2 

214,12 - i71,92 

1,15 - 0,59i 

0,57 - 0,3i 

236,42 -8.5i 

214,41 -72,07i 

34% -1,98*10-3 + 
i0,71*10-2 

238,41 - i9,9 

215,5 - i72,21 

3,32 - i1,72 

1,66 - i0,86 

238,26 - i9,45 

215,33 - i72,55 

4,22 - 2,18i 

2,11 - 1,09i 

240,37 -10,54i 

216,38 -73,09i 

48% -2,97*10-3 + 
i0,01 

240,84- i11,51 

216,79 - i72,62 

4,98 - i2,58 

2,49 - i1,29 

239,92 - i10,31 

216,16 - i72,98 

6,32 - 3,27i 

3,16 - 1,64i 

243,08 -11,94i 

217,74 -73,8i 

67% -3,96*10-3 + 
i0,014 

244,03 - i13,74 

218,49 - i73,21 

6,64 - i3,43 

3,32 - i1,72 

241,58 - i11,16 

216,99 - i73,41 

8,43 - 4,36i 

4,22 - 2,18i 

245,79 -13,35i 

219,1 -74,5i 

86% -4,95*10-3 + 
i0,018 

248,4- i17,02 

220,86 - i74,13 

8,3 - i4,29 

4,15 - i2,15 

243,24 - i12,02 

217,82 - i73,84 

10,54 - 5,45i 

5,26 - 2,73i 

248,51 -14,75i 

220,45 -75,2i 

90% -5,4*10-3 + 
i0,019 

250,98- i19,08 

222,27- i74,74 

9,05 - i4,68 

4,53 - i2,34 

243,99 - i12,41 

218,22 - i74,03 

11,5 - 5,95i 

5,74 - 2,97i 

249,74 -15,39i 

221,07 -75,52i 

95% -5,65*10-3 + 
i0,02 

252,68 - i20,5 

223,21 - i75,17 

9,48 - i4,91 

4,74 - i2,45 

244,43 - i12,64 

218,41 - i74,14 

12,04 - 6,23i 

6,02 - 3,12i 

250,45 -15,75i 

221,42 -75,7i 

Disabled  -5,94*10-3+ 
i0,021 

254,79 - i22,31 

224,38 - i75,73 

9,96 - i5,15 

4,98 - i2,58 

244,9 - i12,88 

218,65 - i74,27 

12,65 - 6,54i 

6,32 - 3,27i 

251,22 -16,15i 

221,81 -75,9i 
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Fig. 4. The values of the real part of the voltage in the second 
node. 

 
Fig. 5. The values of the imaginary part of the voltage in the 
third node. 

As can be seen from the results, steady state 
linearized model using for investigated EPS with 
disabled power line 1 gives voltage deviation in 
comparison with calculation of steady state with disabled 
power line in 9.89kV. 

When sensitivity model of second order was used 
deviation was 3,57 kV (1,4%) on the active part of 
power and 6,16 kV (27,6%) on the reactive part. The 
voltage deviation by modulus in the second node was 
1.6%, in the third node it was 0.8%. 

4 Conclusion 
In this paper we consider the approximation task of the 
postfault EPS steady state calculation while assess its 
static security. Sensitivity models based on first-order 
and second-order differentials of EPS steady state are 
suggested for doing that. When security assess, it 
becomes necessary to calculate the set of EPS steady 
states because of equipment failures and deviations of 
customers load. Therefore, when using sensitivity 
models changings of powerlines capacity, customers 
load and generating capacity are taken as input 
parameters and voltages in EPS nodes and powerlines 
overflows as output. Some differentials of the first and 
second orders of the steady-state EPS are obtained. 

Within the framework of a numerical experiment, 
investigations were carried out on a three-node EPS 
scheme where one of the powerlines was disabled. The 
values of the voltages in the EPS nodes were obtained as 
a result of steady state calculating on the initial model 
and on the sensitivity model, which characterizes the 
voltage deviation in the EPS nodes from the powerlines 
capacity changing. 

 

The reported study was funded by RFBR according to the 
research projects No. RFBR 16-38-00312 мол_a 
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