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Abstract. Seismic event consists of surface waves and body waves. Due to the fact that
the body waves are faster (P-waves) and more energetic (S-waves) in literature the prob-
lem of their analysis is taken more often. The most universal information that is received
from the recorded wave is its moment of arrival. When this information is obtained from
at least four seismometers in different locations, the epicentre of the particular event can
be estimated [1]. Since the recorded body waves may overlap in signal, the problem of
wave onset moment is considered more often for faster P-wave than S-wave. This how-
ever does not mean that the issue of S-wave arrival time is not taken at all. As the process
of manual picking is time-consuming, methods of automatic detection are recommended
(these however may be less accurate). In this paper four recently developed methods
estimating S-wave arrival are compared: the method operating on empirical mode de-
composition and Teager-Kaiser operator [2], the modification of STA/LTA algorithm [3],
the method using a nearest neighbour-based approach [4] and the algorithm operating on
characteristic of signals’ second moments. The methods will be also compared to well-
known algorithm based on the autoregressive model [5]. The algorithms will be tested in
terms of their S-wave arrival identification accuracy on real data originating from Inter-
national Research Institutions for Seismology (IRIS) database.

1 Introduction

The indication of seismic event moment of arrival is vital in the processing of seismic signals, e.g.
when the problem of event’s energy evaluation is considered (which is mostly done by computing
the integral of the registered signal from it’s moment of arrival till the end). Moreover, the result has
to be rescaled in accordance to the distance between the sensor and the event’s hypocenter (due to
inverse-square law). Naturally when this approach is conducted one has to estimate the moment of
wave arrival and the distance (which is commonly solved with the aid of onset moment indicated by
at least four different single-axial sensors).

Single excitation indicate various waves which differ in terms of propagation patterns. They can
be divided into [6]: body waves, which travel through the Earth interior, and surface waves which
propagate along the interface between differing media. As their name suggest the main difference
between the body and surface waves is the place of their occurrence. Another difference is their
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carrier frequency which for body waves is much higher thus their identification on seismometer data
is relatively easy.

Thebody waves can be qualified as Primary waves (P-waves, pressure waves) and Secondary
waves (S-waves, shear waves). As the P-waves are the fastest one (especially faster than the S-wave),
sensors register their moment of arrival as first. When the sensors are relatively close to the event
epicentre the delay between event’s onset moments are small thus the indication of arrivals other than
P-wave is difficult. The indication of waves arrival may be considered as a case of finding a structural
break detection [7–10]. Recently couple new methods to indicate the S-wave arrival were created.
However, the results of each are obtained from different set of data. Thus this is quite hard to tell
which of them is the most accurate. It was decided to compare these new methods altogether with one
well-known method. All of the methods employs the same real data set.

2 Methodology

2.1 Kirbas-Peaker Algorithm

Kirbas-Peaker algorithm [2] was proposed in 2016. The method is based on Empirical Mode Decom-
position (EMD) and Teager-Kaiser energy operator (TKEO).

First part of the algorithm, EMD, is useful for processing natural signals as it doesn’t need as-
sumption about its linearity and stationarity [11]. The EMD divides the time series into Intrinsic
Mode Functions (IMF) which form complete and nearly orthogonal basis for the signal. Each mode
function fulfils two constraints: having only one extreme between zero crossing, and the mean value
of their upper and lower envelope must equal zero.

TKEO is a nonlinear operator which is used to estimate the energy of signal. For n-th sample of
discrete signal x[n] it is defined as [12]

Ψ(x[n]) = x[n − 1]2 − x[n] x[n − 2] . (1)

In this method the mean TKEO is used. It is described as:

Ψ(x[n]) = log


1
N

n∑
m=m−N+3

x[n − 1]2 − x[n] x[n − 2]

 , (2)

where N is the window length. Kirbas-Peaker algorithm has the following steps:

1. The signal is filtered by 10-point moving average and IRR Butterworh band-pass filter [13].

2. The resulting signal is divided into windows of N samples.

3. The EMD algorithm is applied to each window. The IMF with the most visible S-wave is taken.

4. In each window the mean TKEO is calculated.

5. First window with mean TKEO exceeding predefined threshold ths implies the period with
S-wave onset.

6. The sample with maximum TKEO value (in the corresponding window) is chosen as actual
S-wave arrival moment.
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2.2 Rawles-Thurber Algorithm

The method [4] was presented in 2015 and uses a nearest neighbours-based approach of Nikolov
[14]. A method does not need to use parameters estimated from data, but uses data itself to build
a model. The main issue is to aggregate the set of reference data with P-waves and S-waves picks
which is compared to the analysed seismic signals. The method may somehow be considered as a
clusterisation problem [15, 16]. The Rawles-Thurber algorithm uses 3 traces of a signal. To indicate
the S-wave, firstly the P-wave onset is pointed. The method consists of following steps:

1. In the first step, two reference data sets are built: for P-waves from vertical trace and for S-
waves from horizontal traces. Each reference set consists of positive R+ and negative examples
R−, where positive examples are N-length windows surrounding the P-wave/S-wave onsets and
negative are windows with length of N containing for example noise or P-wave/S-wave coda.

2. The next move is windowing and data preprocessing by applying the bandpass filter. All of
signal’s traces are divided into moving-windows of the same length as reference windows. Each
window is scaled as follow: the absolute amplitude of window is divided by the mean of its first
half.

3. For each window of N-length, the similarity metric d(r, s) to reference examples is computed,
where d(r, s) is the sum of squares of the Euclidean distance between the sample of reference
signal ri and observed signal si:

d(r, s) =
N∑

i=1

(ri − si)2 . (3)

4. Subsequently the score function R(s) is determined for each window as the ratio of the negative
to positive distances of the particular trace:

R(s) =
∑

r∈R− d(r, s)∑
r∈R+ d(r, s)

. (4)

As for S-wave identification two horizontal traces are used, to appoint the S-wave score function
RS (s), two horizontal scores RH1(s) and RH2(s) are multiplied:

RS (s) = RH1(s) · RH2(s) . (5)

5. The centre of the window with the biggest value of score RP(s) for a vertical trace indicates the
moment of P-wave onsets, and the biggest RS (s) – the moment of S-wave onset. In addition,
the RP(s) and RS (s) scores must exceed the thresholds and the difference between P-wave and
S-wave picks has to be located in user-supplied range.

2.3 Tasic-Runovc Algorithm

Tasic-Runovc approach [3] is a modification of STA/LTA algorithm and needs three-component seis-
mic station monitors with velocities in east-west (E), north-south (N) and vertical (V) directions. The
STA/LTA algorithm is based on the energy analysis by the ratio of the short-term average (STA) en-
ergy to long-term average (LTA) energy level from the same seismogram [17]. In T-R method the
modification of STA/LTA is applied through the transformation of signal f (xi). The nominator still
gives the information about the sensitivity for local changes in the amplitude as the STA segment,
however the denominator informs about the amplitude variation from the sample i to the end of the
signal. The algorithm is as following:
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1. Each trace of signal is saved as vectors YE, YN, YV:

YE = (e1, e2, . . . , ek) (6)
YN = (n1, n2, . . . , nk) (7)
YV = (v1, v2, . . . , vk). (8)

The length of the signal is k and an i-th sample is in the range 1 < ip < is < k, where ip indicates
the moment of P-wave and is – moment of S-wave arrival.

2. To estimate the relative total energy, the vector O consisting of the sum of squares of the com-
ponents of 3 traces is used:

oi = e2
i + n2

i + v
2
i . (9)

3. To appoint the S-wave pick, the f (xi) function is made:

f (xi) =
1
l
∑i+l−1

j=i |x j|
1

k−i+1
∑k−l

j=i |x j|
for i = 1, . . . k − l . (10)

where l is the window’s length.

4. The arguments of the function above are components of vectors YE, YN and O. The next step
is to make a characteristic vector C with components:

ci = f (ei) f (ni) f (oi) for i = 1, . . . n − k . (11)

5. If the sample of the characteristic function exceeds the user-supplied threshold as the first one,
sample is is taken as the moment of S-wave arrival.

2.4 Sokolowski-Wylomanska-Zimroz algorithm

The algorithm is expansion of P-wave indicating algorithm [18]. The procedure is based on the
characteristic of signals’ empirical second moment. It is known that when Xt is consisted of i.d.d.
random variables with mean µ and variance σ2 they fulfill [19]:

E
n∑

i=1

X2
i =

n∑
i=1

EX2
i =

n∑
i=1

(E(Xi − EXi)2 + (EXi)2) = n(σ2 + µ2). (12)

This clearly induces that when the cummulative sum of squared signal
∑n

i=1 x2
i is considered, one has

to be aware that if xi is i.i.d. the regression line can be fitted. It is common to assume that the seismic
noise fulfils the assumption of being i.d.d. However, when signal’s part after the P- or S-wave onset
moment is considered the signal is clearly not i.i.d.

It was noticed that the statistics after the P-wave onset moment (and before the S-wave moment)
becomes concave. It was also noted that when applying the logarithm to the statistics the resulting
function is in general concave from the beginning till the onset moment and from the onset moment
till the end (if on whole its course it is concave it means that no impulse was registered).

In the paper it was also observed that the logarithmic statistic when considered for the part of
signal which includes the seismic wave is well approximated with exponential function. This led the
authors to the following algorithm:
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1. Determine the moment of P-wave arrival (p) for input signal st of length n. Take xt = st+p−1 for
t ∈ {1, 2, ..., n − p + 1}.

2. Compute Lt = log(
∑t

i=1 x2
i ) for t ∈ {1, 2, ..., n − p + 1}.

3. For i = {3, 4, ..., n− p+ 2} let L1
t = Lt for t = 1, 2, ..., i, L2

t = Lt+i for t = 1, 2, ..., n+ 1− p− i. Fit
ea1 x+b1 + c1 to L1

T and ea2 x+b2 + c2 to L2
T sum their squared errors (SSE). Find i which minimises

SSE.

4. S-wave arrival is indicated for i + p.

2.5 Takanami-Kitagawa Algorithm

Algorithm of Takanami-Kitagawa [5] was proposed in 1988 and uses the AR model to analyse seismic
signal. Despite the fact of seismic signals being non-stationary, they can be divided into two subseries
and each of them can be approximated by the AR model.
The method to obtain the moment of S-wave arrival is as follows:

1. The signal is divided into two subseries before and after the unknown moment of S-wave arrival:

xn =

M(1)∑
m=1

a1
m xn−m + ε

1
n, (1 ≤ n < s1) (13)

xn =

M(2)∑
m=1

a2
m xn−m + ε

2
n, (s1 ≤ n ≤ N) (14)

where εi
n is a Gaussian noise with mean zero and variance σ2

i , ai
m is the autoregressive coef-

ficient, M(i) is the order of the i-th model, s1 is the unknown arrival time and N is the length
of series. The [13] is considered as the "noise" part of signal and [14] as the "earthquake" part
of signal, where S-wave appears. The length of "noise" window increases together with the s1,
while the "earthquake" window’s length decreases.

2. To measure the quality of estimated model, the Akaike Information Criterion (AIC) is used:

AIC = −2(logLmax) + 2(MP) , (15)

where Lmax is the maximised value of the likelihood function for the model and MP is the
number of independently estimated parameters.
For each potential time of S-wave arrival s1 AIC is calculated for the first part of signal AIC1

i
and second part AIC2

i .

3. Then the sum of two AIC is taken:

AICi = AIC1
i + AIC2

i . (16)

4. The sample imin with minimum value of AICi is searched.

5. The sample imin + 1 responds the S-wave pick.
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3 Applications

The above-mentioned algorithms are tested on two signal sets from International Research Institutions
for Seismology (IRIS) database with reference picks. Each of them contains the events from West
Coast of South America.

The first set consists of 40 signals registered in Brazilian seismic station SAML from different
earthquakes in 2003-2017, while the second one contains 100 series from LVC station events regis-
tered in 2002-2017. Both data sets are sampled at 20 Hz, the magnitudes of events are above 5.5 and
the distances between stations and earthquakes are between 7◦and 20◦.

If the method does not provide otherwise, the input seismic signals are not denoised as such step
can make onset moment indication easier [20, 21]

In K-P, R-T and T-R algorithms, the setting of few parameters is essential and most of them is
determined by the minimum mean squared or absolute errors between reference and auto S-wave
picks on the mesh with different values of parameters.

In Kirbas-Peaker approach the optimal length of window N, the number of IMF and threshold ths

are chosen from the mesh of mean absolute errors between references and auto picks for particular
parameters.

The least error is reached for north-south trace and parameters which are showed in table 1.

Table 1. Parameters used in Kirbas-Peaker algorithm

1st data set 2nd data set
length of window N (in samples) 72 50
the number of IMF 1 5
S-wave threshold ths 0.7207 0.05

In Rawles-Thurber method the thresholds thP and thS are appointed from the mesh of mean abso-
lute errors between picks and the length of window was taken as in Rawles-Thurber paper [4]. The
range of distance between P-wave and S-wave picks is determined on the base of reference picks in
data sets. A different reference set from other observed signals (39 for 1st set and 99 for 2nd set) is
created for each signal. The parameters used in this method are presented in table 2.

Table 2. Parameters used in Rawles-Thurber algorithm

1st data set 2nd data set
length of window N (in samples) 67 67
P-wave threshold thP 0.0001 0.03
S-wave threshold thS 0.0001 0.0001
minimum distance between P and S-wave S Pmin (in samples) 200 900
maximum distance between P and S-wave S Pmax (in samples) 3100 3100

To chose the best parameters for Tasic-Runovc algorithm the mesh with mean squared errors is
applied. Optimal threshold thS and the length of window l are presented in Table 3.

Table 3. Parameters used in Tasic-Runovc algorithm

1st data set 2nd data set
length of window l (in samples) 50 100
S-wave threshold thS 2 2

.
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In Takanami-Kitagawa algorithm, the AR models are matched to data starting from the sample
iP + 200, where iP is the moment of P-wave onset and ending on the end of the signal. In the first step
of fitting autoregressive models the "noise" part consists of the samples in:

in ∈ [i1, . . . , i199] ,

where i1 = iP + 200 and the "earthquake" part from the samples ie:

ie ∈ [i200, . . . , iN] ,

where N – the length of signal. The first and second part was moving on the right in the each consec-
utive step (the last element in "noise" part and the first one in "earthquake" part are changing) and the
best models of AR are fitted to each part. Maximum order of AR model to first part of signal is 10
and to second part – 15 in both data sets.

3.1 Application to the particular signal

In the figures below the application of all five methods to the one signal from the first analysed set
of data is shown. The upper panels of all figures present the signal with indicated reference S-wave
onset.

Figure 1 presents the implementation of Kirbas-Pekaer to the exemplary signal. The lower panel
illustrates the mean TKEO value computed for each window of signal. The horizontal solid line
represents the S-wave threshold thS and the distinguished box indicates the window exceeding the
value of threshold as the first one. The sample with maximum value of mean TKEO in that window
responds the S-wave pick.

Figure 1. Application of Kaiser-Peaker method to the particular signal.

The implementation of Thurber-Rawles algorithm was presented in the figure 2. The lower panel
illustrates the score function RS , which was computed for each window of the signal. The dot repre-
sents the minimum value of RS and thereby the moment of S-wave onset.
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Figure 2. Application of Rawles-Thurber method to the particular signal.

In Figure 3 the application of Tasic-Runovc method can be seen altogether with the statistic which
determines the results. It can be seen that with the S-wave onset moment the statistics considerably
rises which confirms the algorithm idea.

Figure 3. Application of Tasic-Runovc method to the particular signal.

In Figure 4 the exemplary signal is presented in upper figure and its L statistic. It can be seen that
this statistic consists of 3 consequent concave functions which have their limits in moments of P- and
S-wave arrivals. Thus when the algorithm finds these limits it finds the moment of wave arrival.
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In Figure 4 the exemplary signal is presented in upper figure and its L statistic. It can be seen that
this statistic consists of 3 consequent concave functions which have their limits in moments of P- and
S-wave arrivals. Thus when the algorithm finds these limits it finds the moment of wave arrival.

Figure 4. Application of Sokolowski-Wylomanska-Zimroz method to the particular signal.

Figure 5 presents the application of Takanami-Kitagawa algorithm. The lower box pictures the
sums of AIC values from "noise" and "earthquake" auto-regressive models. The cross indicates the
sample imin with minimum sum of AIC and the sample imin + 1 represents the S-wave onset.

Figure 5. Application of Takanami-Kitagawa method to the particular signal.
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3.2 Algorithms’ results

In this section all methods are compared. Their results are summarised by such statistics as number
of events whose evaluated S-wave arrival are closer than 10 seconds, mean of absolute differences
between the estimation and real moment, its standard deviation, and standard deviation of differences.
In Table 4 the results of algorithms tested on the first set (which consists of 40 events) are presented.
The bold numbers symbolise the algorithm with best performance in specific statistics.

Table 4. Algorithms’ results for the first set

K-P R-T T-R S-W-Z T-K
#i : |si − ŝi| ≤ 10 s 7 7 15 14 15
1
n
∑n

i=1 |si − ŝi| [s] 46.31 42.59 36.30 30.37 34.00
std(|si − ŝi|) [s] 68.90 44.37 51.20 32.90 33.23
std(si − ŝi) [s] 50.65 32.97 36.25 29.71 29.76

In Table 4 it can be seen that the Takanami-Kitagawa and Tasic-Runovc algorithms has the most
number of indications closer than 10 seconds (15 out of 40 which is 37.5%). However other statistics
(mean value of errors, and their standard deviations) clearly show the superiority of Sokolowski-
Wylomanska-Zimroz method. The Kirbas-Peaker algorithm seems to be the least accurate.

Table 5. Algorithms’ results for the second set

K-P R-T T-R S-W-Z T-K
#i : |si − ŝi| ≤ 10 s 14 10 1 26 31
1
n
∑n

i=1 |si − ŝi| [s] 41.97 58.51 31.18 17.71 27.57
std(|si − ŝi|) [s] 36.57 41.58 20.70 16.07 28.31
std(si − ŝi) [s] 55.05 67.49 31.04 22.93 36.46

In Table 5 the results of methods applied to the second set (100 signals) are presented. This time
the results are almost the same as in Table 4. The biggest change is the small number of accurate
picks of Tasic-Runovc algorithm (Previously 37.5% of indications and now 1%). Also the results of
Sokolowski-Wylomanska-Zimroz algorithm seem to be more accurate than for the previous set.

4 Conclusions

In this paper the problem of S-wave arrival has been presented. Within this four relatively new al-
gorithms indicating moment of S-wave arrival were compared altogether with one earlier and more
commonly used method. The algorithms were tested on real data which was gained from the Interna-
tional Research Institutions for Seismology database.

The results for the first data-set provides that the Takanami-Kitagawa and Tasic-Runovc algo-
rithms have the most number of accurate picks for, however they are not the most accurate algorithms,
as the Sokolowski-Wylomanska-Zimroz indicated picks that were on average most accurate with the
results having the lowest variance (and in this terms the Takanami-Kitagawa is the second best). The
results also show that the Kirbas-Peaker is the least one and the Rawles-Thurber is last but one in
terms of results accuracy.

For the second data-set only Takanami-Kitagawa algorithm has the biggest number of accurate
picks (Sokolowski-Wylomanska-Zimroz has the second best number and this time Tasic-Runovc
method has only one accurate pick). In terms of accuracy once again S-W-Z algorithm is the most
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3.2 Algorithms’ results

In this section all methods are compared. Their results are summarised by such statistics as number
of events whose evaluated S-wave arrival are closer than 10 seconds, mean of absolute differences
between the estimation and real moment, its standard deviation, and standard deviation of differences.
In Table 4 the results of algorithms tested on the first set (which consists of 40 events) are presented.
The bold numbers symbolise the algorithm with best performance in specific statistics.

Table 4. Algorithms’ results for the first set

K-P R-T T-R S-W-Z T-K
#i : |si − ŝi| ≤ 10 s 7 7 15 14 15
1
n
∑n

i=1 |si − ŝi| [s] 46.31 42.59 36.30 30.37 34.00
std(|si − ŝi|) [s] 68.90 44.37 51.20 32.90 33.23
std(si − ŝi) [s] 50.65 32.97 36.25 29.71 29.76

In Table 4 it can be seen that the Takanami-Kitagawa and Tasic-Runovc algorithms has the most
number of indications closer than 10 seconds (15 out of 40 which is 37.5%). However other statistics
(mean value of errors, and their standard deviations) clearly show the superiority of Sokolowski-
Wylomanska-Zimroz method. The Kirbas-Peaker algorithm seems to be the least accurate.

Table 5. Algorithms’ results for the second set

K-P R-T T-R S-W-Z T-K
#i : |si − ŝi| ≤ 10 s 14 10 1 26 31
1
n
∑n

i=1 |si − ŝi| [s] 41.97 58.51 31.18 17.71 27.57
std(|si − ŝi|) [s] 36.57 41.58 20.70 16.07 28.31
std(si − ŝi) [s] 55.05 67.49 31.04 22.93 36.46

In Table 5 the results of methods applied to the second set (100 signals) are presented. This time
the results are almost the same as in Table 4. The biggest change is the small number of accurate
picks of Tasic-Runovc algorithm (Previously 37.5% of indications and now 1%). Also the results of
Sokolowski-Wylomanska-Zimroz algorithm seem to be more accurate than for the previous set.

4 Conclusions

In this paper the problem of S-wave arrival has been presented. Within this four relatively new al-
gorithms indicating moment of S-wave arrival were compared altogether with one earlier and more
commonly used method. The algorithms were tested on real data which was gained from the Interna-
tional Research Institutions for Seismology database.

The results for the first data-set provides that the Takanami-Kitagawa and Tasic-Runovc algo-
rithms have the most number of accurate picks for, however they are not the most accurate algorithms,
as the Sokolowski-Wylomanska-Zimroz indicated picks that were on average most accurate with the
results having the lowest variance (and in this terms the Takanami-Kitagawa is the second best). The
results also show that the Kirbas-Peaker is the least one and the Rawles-Thurber is last but one in
terms of results accuracy.

For the second data-set only Takanami-Kitagawa algorithm has the biggest number of accurate
picks (Sokolowski-Wylomanska-Zimroz has the second best number and this time Tasic-Runovc
method has only one accurate pick). In terms of accuracy once again S-W-Z algorithm is the most

accurate one, Takanami-Kitagawa has the second best average picks, however greater standard de-
viation than Tasic-Runovc. This time the Kirbas-Peaker algorithm has the fourth best results and 
Rawles-Thurber is the least accurate one.

The aggregated results provide that the Sokolowski-Wylomanska-Zimroz algorithm despite being 
second the best in terms of number of accurate picks has the most accurate results on average and the 
least average variance of results thus it is recommended to use.

In the paper no attention was paid on the computational complexity of algorithms which may be a 
proposition for future work.
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