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Abstract. In signal processing the clipping is understand as the phenomenon of limiting
the signal beyond certain threshold. It is often related to overloading of a sensor. Two par-
ticular types of clipping are being recognized: soft and hard. Beyond the limiting value
soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal
values at the limit. In both cases certain amount of signal information is lost. Obviously
if one possess the model which describes the considered signal and the threshold value
(which might be slightly more difficult to obtain in the soft clipping case), the attempt of
restoring the signal can be made. Commonly it is assumed that the seismic signals take
form of an impulse response of some specific system. This may lead to belief that the
sine wave may be the most appropriate to fit in the clipping period. However, this should
be tested. In this paper the possibility of overcoming the hard clipping in seismic signals
originating from a geoseismic station belonging to an underground mine is considered. A
set of raw signals will be hard-clipped manually and then couple different functions will
be fitted and compared in terms of least squares. The results will be then analysed.

1 Introduction

In the data acquisition system the problem of good quality data collection is vital. The problem of
data validation in the real world measurement system is renowned [1]. The quality of the data is
poor mostly due to harsh environmental conditions (e.g. in monitoring of such machines as wind
turbines [2] or mining machines [3–5]) or complexity of analysed process [6–8]. In the seismic
signal processing one has to deal with plenty of difficulties. They include such problems as: small
signal-to-noise ratio, missing data, signal distortions due to nonlinear effect of the data acquisition or
transmission systems.

The signal clipping is one of the most common problems met in the signal processing field. The
problem arises due to the limited range of values which the common sensors can register. The example
of hard clipping can be seen in Figure 1

The negative impact of the clipping is obvious. The information of the signal is lost thus such
values as the total energy which is travelling through the sensor is impossible to acquire [9].

One of the solutions implemented in order to overcome the clipping problem is the artificial divi-
sion of signal values during the period of high values, thus producing the soft clipping. Such solution
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Figure 1. The example of hard clipped signal

may be problematic as it requires to gather the information of the clipping periods. However, some
sensors lack this kind of solution, thus some alternative is recommended.

One might suppose that the solution for real value evaluation during the hard clipping can be
solved with use of the signal which is registered on parallel sensor (where the signal is not clipped).
Unfortunately, due to different propagation paths these signals might be significantly diverse, which
rejects such approach.

Due to the above mentioned fact, to solve the problem of choosing the proper function one has to
work on the non-clipped signals, artificially clipping them afterwards and compare evaluated values to
vanilla signals. It is commonly assumed that the seismic signals take the form of an impulse response
of some specific system [10]. This may lead to belief that the sine wave may be the most appropriate
to fit. However, it is recommended to be tested.

The main idea of this paper is to bring the signal artificially under hard clipping. Then basing
on the signal samples which occur just before and after the clipping, the signal is estimated. With
comparison of different functions fitted to artificially clipped periods, one can acquire information
which function may estimate the clipping moments in the most accurate way.

Such results may provide the solution, which may be used for sensors which lack the advanced
options.

2 Methodology

During the analysis of signals the artificial limit of clipping is estimated. It is done for non clipped
signals and then the artificial limit is α = p · max(x) for the upper clipping or α = p · min(x) for the
lower clipping, where p ∈ (0, 1) and x is the signal. The main points needed to assign the estimation
function are selected according to the following algorithm:
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which function may estimate the clipping moments in the most accurate way.

Such results may provide the solution, which may be used for sensors which lack the advanced
options.

2 Methodology

During the analysis of signals the artificial limit of clipping is estimated. It is done for non clipped
signals and then the artificial limit is α = p · max(x) for the upper clipping or α = p · min(x) for the
lower clipping, where p ∈ (0, 1) and x is the signal. The main points needed to assign the estimation
function are selected according to the following algorithm:

1. Find the first index of a sample, whose value is above the limit of clipping (the top clipping) or
below the limit of clipping (the bottom clipping) and take this point as x1 by changing its value
to α.

2. Find the following point after x1, which is below (the top clipping) or above (the bottom clip-
ping) the straight line of clipping, then take the previous point and call it x2, change its value to
α.

3. Do points 1 and 2 for the whole signal.

The interval for which the clipping is estimated contains in [x1 − k, x2 + k], where k is the number of
points before or after the clipping.

To estimate the real signal, the basic functions are needed. They are described with the formulas:

• Two linear functions: f (x) = a1 · x + b11[p1,c] + a2 · x + b21(c,p2],

• Quadratic function: f (x) = (a · x2 + b · x + c)1[p1,p2],

• Sine function: f (x) = a · sin(b · x + c)1[p1,p2],

• Power function: f (x) = (a · |x − x̄|b + c)1[p1,p2],

• Exponential function: f (x) = (ea·x2
+ b)1[p1,p2],

where p1, p2 stands for left and right limit of single clipping. The main reason behind selection of
these functions was their simplicity (before testing more complicated functions it is justified to check
the simpler).

To make the function estimation more precise, it is necessary to take the proper number of points
before and after clipping into account during the approximation. Depending on the taken p, the
number k may be different. Additionally the considered observations are divided by length of clipping
interval (lengths from 2 to 5 and lengths greater 5).

Sum of squared errors is defined as:

S S E =
n∑

i=1

(xi − x̂i)2, (1)

Where n is length of the clipping period, xi is the signal value before clipping, x̂i is estimated value.
SSE is used to estimate the error with which the solution fits to the real signal.

3 Applications

In order to efficiently evaluate the individual function potential, one has to test it on the real data. In
this section the details of analysed data and results of tested functions are presented.

The data-set on which the functions are tested consists of 38 real seismic signals acquired in an
underground mine which were basically not clipped. In Figures 2-6 the results of proposed functions
are contained. In order to compare their effectiveness the tested function is the same in each figure.
The exemplary function clipping level is 0.25.

In Figure 2 one can see the example fitting of the linear function. It can be seen that the function
has the tendency to fit values more extreme (for the absolute value of signal, the estimated values
greater than the actual ones).

In Figure 3 one can see the second order polynomial fitted to the artificially clipped signal. The
estimated values have the tendency to be closer to the mean value of the signal than the actual values.
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Figure 2. The example of linear function fitting used on clipped signal fragment

Figure 3. The example of second order polynomial function fitting used on clipped signal fragment

The fitting of the sine function can be seen in Figure 4. Clearly the values of the estimated function
for the example signal are closer to actual values than for that in Figure 3.
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Figure 2. The example of linear function fitting used on clipped signal fragment

Figure 3. The example of second order polynomial function fitting used on clipped signal fragment

The fitting of the sine function can be seen in Figure 4. Clearly the values of the estimated function
for the example signal are closer to actual values than for that in Figure 3.

Figure 4. The example of sine function fitting used on clipped signal fragment

Figure 5. The example of power function fitting used on clipped signal fragment

In Figure 5 the power function fitted to the clipping is included. It can be seen, that the proposed
function has the tendency to estimate values more extreme than the actual values.

5

E3S Web of Conferences 29, 00020 (2018) https://doi.org/10.1051/e3sconf/20182900020
XVIIth Conference of PhD Students and Young Scientists



Figure 6. The example of exponential function fitting used on clipped signal fragment

The clipping with fitted exponential function can be seen in Figure 6. The results of this function
seem to be similiar to those of the quadratic function (fitted function too smooth).

In Figure 7 the collective results for all different functions can be seen for one upper clipping (a),
and one lower (b). Both examples show that the power and linear functions have the values steeper
than the actual and the rest of the functions have the results considerably smoother (with considerably
similar values). Moreover, the lack of the real signal symmetry can be seen (however, this can be due
to the sampling frequency).

The summary of the functions fitting potential is presented in Table 1 for short clippings and in
Table 2 for long ones.

Table 1. Clipping ≤ 5 samples

Clipping level Linear Quadratic Sine Power Exponential
0.25 0.0157 0.0090 0.0079 0.0222 0.0101
0.40 0.0156 0.0221 0.0197 0.1980 0.0248
0.55 0.0241 0.0393 0.0364 0.0276 0.0421

In Table 1 the sum of squared errors between fitted functions and real signal for short clippings
are included. It can be seen that for the clipping level 0.25 the sine function is the best fitted and the
quadratic function is the second best. For clipping levels 0.40 and 0.55 the linear function is the best
fitted function and the sine function is the second best for the 0.40 level, and power function for 0.55.
The power function has the worst results for the 0.25 and 0.40 levels and the exponential function for
0.55. The good results of power function for the exemplary signal seem not to double for the rest of
the signals.
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Figure 7. Comparison of all tested functions on a) upper and b) lower clipping

Table 2. Clipping > 5 samples

Clipping level Linear Quadratic Sine Power Exponential
0.25 0.0091 0.0014 0.0015 0.0011 0.0013
0.40 0.0096 0.0051 0.0042 0.0054 0.0075
0.55 0.0490 0.0631 0.0458 0.0938 0.0252

In Table 2 the results for the longer clippings are included. In this case the power, sine and 
exponential functions have the best fitting for the respectively 0.25, 0.40, 0.55 clipping levels and the 
exponential, quadratic and sine functions are the second best. In case of longer clippings the power 
function is considerably more accurate for clipping level 0.25 and 0.40.

Unfortunately none of the considered functions proved to be undoubtedly better than the other. 
This may be due to the considerably small testing dataset.

4 Conclusions

In this paper a problem of seismic signals clipping overcoming has been shown. In order to find the 
best function which could be fitted to hard-clipped data, five different functions were considered. Four 
of them were symmetric, and one (linear) not.

The function were tested on a real non-clipped seismic signals originating from an underground 
mine. To exhaust the subject, the signals were clipped on different level and each of these levels were 
considered separately. Also the clippings were divided into short (≤ 5 samples) and long.

The results proved to be ambiguous, as for different clipping level and length of clipping, different 
functions proved to be the best fitted. It is suspected that this may due to relatively small testing data-
set. In future work it is suggested to enlarge testing set in order to make the results clear. Also it is 
recommended to check fitting potential of other non-symmetric function.

This work was financed by the Grant no. 0401/0128/17.
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