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Abstract. In conditions of development of generating facilities on renewable energy sources, the technology
runs up to uncertainty in the operational and short-term planning of the power system operating modes. To date,
reliable tools for forecasting the generation of solar power stations are required. This paper considers the
methodology of operational forecasting of solar power stations output based on the mathematical apparatus of
cubic exponential smoothing with trend and seasonal components. The presented methodology was tested
based on the measuring data of a real solar power station. The average forecast error was not more than 10%
for days with variable clouds and not more than 3% for clear days, which indicates the effectiveness of the
proposed approach.

1 Introduction
In conditions of the energy market development, the role
of effective management tasks at all levels – the power
station, the power system, the power pool system – is
immeasurably increasing. At the same time, the
effectiveness of the operational optimal control of the
power system mode is firstly determined by the
correctness and accuracy of the forecast for the power
stations generation and the load power. The most
important procedures in the power joint market are the
competitive capacity auction on the day-ahead market,
solving the technical and economic problem to select the
live generating equipment, as well as the calculation and
considering generation patterns under the power system
actual control on-line within the balancing power market.

In accordance with the rules for the price bids
submission by participants in the wholesale market [1],
the applications of electricity suppliers are submitted
taking into account following requirements:

• applications on the day-ahead market are sent for
every hour of the day Х (applications are sent per
day Х-1 to 13:30 Moscow time);

• applications on the balancing market are sent
every hour (one hour before calculating the
balancing market plan).

In conditions of development of generating facilities
on renewable energy sources, the degree of uncertainty in
the operational and short-term planning of the power
system operating modes is significantly increased. To
date, reliable tools for forecasting the generation of
power stations using, in particular, solar energy are
required. Taking into account the nature of the wholesale
electricity market in the UES of Russia, the short-term
forecasting of solar power stations generation is

considered in terms of the application on the day-ahead
market. It is also required to obtain reference data on the
solar power station generation for the day X+1, X+2,…,
X+N, depending on the availability of relevant weather
forecast data provided by the weather provider.

When controlling the operating mode of the
power system on-line, it is necessary to compensate
the departure from the mode planned one day ago.
Therefore, the task of operational forecasting is
considered in terms of filing applications on a
balancing market for the next hour, as well as for
obtaining reference data on the solar power station
generation for several hours ahead.

To date, there are many methods for forecasting the
generation of solar power stations based on the
forecasting the solar radiation flux density. There are a
number of outstanding methodologies based on the
identification of satellites images of cloud movement in
the area where the object under consideration is
located [2].

In a number of works, it is proposed to use specialized
measuring instruments that allow quickly assessing the
weather conditions. The use of these methods, as a rule,
is limited by the characteristics of the weather data being
analyzed, or requires additional investments for the
installation of meteorological measuring posts. From the
point of view of implementation, statistical methods of
time series analysis, such as moving average method,
autoregressive models, etc. are the most simple [3,4]. In
this paper, the application of exponential smoothing
methods to solve the problem of solar power stations
operational forecasting is considered.

For small intervals from 1 to 3 hours, the generation
forecast can be significantly improved by using current
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data obtained by direct observation methods. The main
requirement for measuring current weather conditions at
a solar power station is the horizontally installed
pyranometer for measuring the total flux density of solar
radiation. Current measurements obtained from the
pyranometer are used in the algorithm of operational
forecasting of solar power stations.

The accuracy of the forecast, as a rule, is estimated by
the deviations between the forecast and actual values; the
following attributes are often used to estimate
accuracy [5]:

• mean absolute error value – is useful in assessing
the possible penalties associated with the forecast
inaccuracy;

• mean-square error value – more focuses on large
departures of the forecast from actual values;

• systematic error values associated with
underestimation or revaluation of output.

2 Methodology description

The operational forecast is implemented to control
the operation of the solar power station (5-120
minutes) and is actually a refinement of the short-
term forecast adjusted for current measurement data.
Forecasting for relatively small prediction intervals
is effectively implemented based on statistical
methods of time series analysis, in particular, the
exponential smoothing method [6].

Exponential smoothing is one of the most
common methods of leveling the series. It is based
on the calculation of exponential averages.
Exponential smoothing of the series is carried out
according to the recurrence formula:

1 1(1 ) ,t t tS y S       (1)
where tS is the exponential average at the time t ;
 is the smoothing parameter ( = const, 0 1   );

1ty  is the actual value of the solar radiation flux
density at the time 1t  ; 1tS  is the exponential
average at the time 1t  .

If the recurrence relation (1) is used successively,
the exponential average tS can be expressed in
terms of the values of the series y :
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where tS is the exponential average at the time t ;
N is the number of series terms;  is the
smoothing parameter ( = const, 0 1   ); t iy  is
the actual value of the solar radiation flux density at
the time t i ; N is the parameter for smoothing the
initial conditions; 0S is the value of the solar
radiation flux density, which characterizes the initial
conditions for the first application of formula (1)
for 0t  .

As the initial approximation, the value tS turns
out to be the weighted sum of all the terms of a
series consisting of average values of the solar
radiation flux density, and the weights decrease
exponentially as a function of the prescription
("age") of the observation.

Exponential alignment always requires a
previous exponential average. When the process is
beginning, there must be some value 0S that can be
used as the value preceding 1S . Thus, if there are
past data on the flux density of solar radiation by the
time of the beginning of the alignment process, then
the arithmetic mean of all available points or some
part of them can be used as an initial value 0S .

Identification of the initial level of the series 0S
can also be performed based on a priori knowledge
about the process of changing the flux density of
solar radiation during the day or based on its
analogy with other processes. After k steps, the
weight given to the initial value is (1 )k . If there is
confidence in the validity of the initial value 0S , then
the coefficient  can be taken as small. If there is
no such confidence, the parameter  should be
given a large value, so that the influence of the
initial value decreases rapidly. However, a large
value of  can cause a large dispersion of
tS oscillation. If suppression of these oscillations is

required, then after sufficient removal from the
initial time moment, the value  can be reduced.

The described approach is an exponential
smoothing of the first order, which is mainly
applicable for simple data without pronounced
trends or seasonal changes, but when the data
includes these components, it is recommended to
use exponential smoothing of the second and third
degree for more accurate forecast. Since the value
predicted in the work described - the flux density of
solar radiation - has seasonals, it is recommended to
use cubic exponential smoothing. Basic equations
for its implementation are presented below:

1
( ) ( 1) 1(1 ) ( ),t
f t f t t

t L

P
P P b

I


 


       (3)

where ( )f tP is the exponential average at the time t ;
 is the smoothing parameter ( = const, 0 1   );

1tP is the actual value of the solar radiation flux
density at the time 1t  ; 1tb  is the trend component
at time 1t  ; t LI  is the indicator that takes into
account seasonals in the flux density of solar
radiation.

The trend component for the time t is determined
by the formula:
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( ) ( 1) 1( ) (1 ) ,t f t f t tb P P b      (4)
where tb is the trend component at time t ;  is the
smoothing parameter ( = const, 0 1   ); ( )f tP is
the exponential average at the time t ; ( 1)f tP  is the
exponential average at the time 1t  ; is the trend
component at time 1t  .

The indicator taking into account seasonals of
the predicted value is determined by the formula:

( )
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t t L

f t
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where tI is the indicator taking into account
seasonals of the predicted value for the current
season;  is the smoothing parameter
( const, 0 1    ); tP is the actual value of the
predicted value at the time t ; ( )f tP is the exponential
average at the time t ; t LI  is the indicator taking
into account seasonals of the predicted value for the
previous season;  is the smoothing parameter
( = const, 0 1   ).

It is possible to determine the predicted value for
m intervals ahead based on the trend component for
the time t and the indicator that takes into account
seasonals of the predicted value:

( ) ( )( ) ,f t t m f t t t L mP P m b I      (6)

where ( )f t t mP  is the predicted value for m intervals
ahead; ( )f tP is the exponential average at the time t ;

tb is the trend component at time t ; t L mI   is the
indicator taking into account seasonals of the
predicted value within the season for m intervals
ahead.

To use the model, initialization of the parameters
at the initial stage is necessary. If the forecasted data
includes N periods, then in order to estimate the
trend component it is recommended to use the initial
retrospective data of at least 2N periods. The
equation for the initial estimate of the indicator b is
as following:
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 
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It is also necessary to calculate the initial
characteristics of the seasonals effect. Assume that
there are data on the solar radiation flux density for
6 years, with data for 4 seasons for each year. At the
first stage, the average value of the predicted
parameter is calculated for each year y:
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At the second stage, the specific weights of the
influence of each season for each year are estimated

by dividing the actual values of the predicted
parameter by the average for each year.
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The obtained results are used in the third stage to
find seasonal coefficients as the arithmetic mean of
the calculated values.
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The special attention should be paid to choosing
the value of smoothing constants  ,  and  . As a
rule, these coefficients tend to be fit in such a way
as to minimize the mean square deviation of the
forecast from the actual measurements. The use of
the presented model requires the availability of
retrospective data, while reliable estimation of
seasonals and trend components requires
information on the predicted parameters for at least
two seasons.

The exponential smoothing method
Implementation for operational forecasting of solar
power stations generation is possible with the
following:

1. The development of the cubic exponential
smoothing model taking into account the trend
component and seasonals of the solar radiation flux
density in the first stages of implementation can be
limited by a model of the first or second order by
the moment of accumulation of retrospective data
on solar radiation flux density.

2. In order to ensure a unified approach to the
forecasting problem, the function of calculating the
operational forecast is expedient to be implemented
for estimating the forecast of the solar radiation flux
density. In this case, the solar power station
generation can be found due to a known number and
passport data of photovoltaic panels, inverters,
converters and primary equipment on alternating
current.

3. Taking into account the stochastic nature of
the considered process and the presence of large
"drops" in the time series of the solar flux density
during periods of variable clouds in order to ensure
the exponential smoothing method adaptability to
the current design conditions, smoothing
coefficients  ,  and  will be found
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automatically for each current design day X based
on the previously calculated short-term forecast of
the solar radiation flux density.

Input data: short-term forecast of the solar
radiation flux density for the current day X taking
into account the updated weather forecast provided
by the weather provider    0 1 24, ,...h h hG G G .

Output data: an operational correction of the forecast
of the solar flux density for the current day X taking into
account the weather data received from the
meteorological station established on the territory of the
solar power station   1 240 1, ,..., , ...,h t hh h htG G G G G .

Fitting the coefficients of the exponential smoothing
function  ,  and  is carried out till the actual
sunrise time of the current day, based on the data of the
short-term forecast of the solar flux density for the
current day by estimating the weighted mean percentage
error:

01
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
  (11)

where ( )
m

G t is the average measured value of the solar
radiation flux density near the ground within the defined
time step on the time interval t , [W/m2]; ( )

f
G t is the

average forecast value of the solar radiation flux density
near the ground within the defined time step on the time
interval t , [W/m2]; 0 ( )G t is the solar radiation flux
density at the boundary of the atmosphere for the defined
time step t, [W/m2]. The flux density of solar radiation at
the boundary of the atmosphere is determined in
accordance with the expression [7]:
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where 0G is the average value of the solar radiation flux
density at the boundary of the atmosphere within the
defined time step, [W/m2]; onG is the solar radiation flux
density at the boundary of the atmosphere, [W/m2];  is
the latitude, [degrees];  is the solar declination angle,
[degrees]; 1 is the hour angle at the beginning of the
interval, [degrees]; 2 is the hour angle at the end of the
interval, [degrees].

The weighting of the error at the boundary of the
atmosphere will allow estimating the error relative to the
conditionally constant "base" and showing how many
percent the error is from the maximum possible flux
density of solar radiation for the considered time
interval 8.

This criterion is resistant to individual "spikes" of the
model and provides the ability to fit automatically
optimal smoothing coefficients for the current design day
X by the brute force, which is easily implemented
programmatically.

3 Calculation example
Within the framework of the presented work, the
feasibility of implementing the operational forecast
function for the existing solar power station was analyzed.
Geographic parameters, as well as the time zone
parameters are presented in the Table 1.

Table 1. Geographic parameters of the solar power station
location

№ Parameter Symbol Units Value

1. Latitude 1b [degrees] 51.26

2. Longitude 1c [degrees] 58.47

3. Difference with
Greenwich time 1d [hours] 5

The data of current measurements for the period from
01.05.2017 to 28.05.2017 were taken for the analysis.
Measuring data on the flux density of solar radiation is
represented by averaged half-hour values. Since within
the balancing market the information is submitted 1 hour
before the planning of the power system, the forecasting
of the solar power stations generation is 1 and 2 steps
ahead. Their averaged value is taken as their predicted
value.

The forecast error parameters for the characteristic
days of the period under consideration are presented in
Table 2.

Table 2. The forecast error in case of cubic exponential
smoothing

№ Date Weather
conditions

Weighted
error for
30 minutes
ahead, %

Weighted
error for an

hour
ahead, %

1. 01.05.17 clear (no clouds) 2.77 4.03

2. 03.05.17 light clouds 4.36 5.52

3. 19.05.17 variable clouds 7.35 9.49

4. 11.05.17 continuous
clouds 5.98 7.16

5. 01.05.2017 – 28.05.2017
4.96

min – 1.87
max – 9.85

6.50
min – 2.45
max – 12.69

Graphical representation of the actual and forecast
curve for some characteristic days of the period under
consideration is presented in Figures 1-2.

To illustrate the effectiveness of the methods and
approaches for operational forecasting of solar power
generation, Figure 3 presents a graphical comparison of
the accuracy of the short-term solar power station
generation forecast for the day ahead and operational
forecast.
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Figure 1. Hour-ahead exponential smoothing forecasting, 01.05.2017

Figure 2. Hour-ahead exponential smoothing forecasting, 19.05.2017

Figure 3. Hour-ahead exponential smoothing forecasting, 28.05.2017

Obviously, an operational correction based on current
measurements allows to significantly reduce the error,
which is due, among other things, to the low accuracy of
weather data, on the basis of which the day ahead
forecast was made.

4 Conclusion
In this paper an approach to operational forecasting of
solar power generation based on the cubic exponential
smoothing method, taking into account the trend and

seasonal components in the initial sample, was
considered.

Accounting the seasonal component, obtained by the
methodology presented in this article, allows to
significantly reduce the "backlog" effect typical for all
forecasting methods based on the retrospective data
analysis, thereby accuracy of forecasting on clear and
cloudy days significantly increases.

The average error calculated with respect to the flux
density of solar radiation at the boundary of the
atmosphere was no more than 10%, which proves the
high accuracy of the forecast of output of the generating
object. It should be noted that the error substantially
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increases as the forecast horizon deepens, which indicates
the necessity to revise this methodology when predicting
3 or more hours ahead.

Greater accuracy can be achieved by increasing the
discreteness of the information analyzed. Therefore,
when predicting with a discreteness of 30 minutes, it is
expedient to monitor the dynamics of the predicted
parameter at 10-15 minutes intervals, which allows to
correct the trend component promptly.
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