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Abstract: The role of constraint energy-saving policy (ESP) playing in the coordinated development of 
energy conservation, emission reduction, and economic growth is of great significance to the country’s 
sustainable progress. Applying a non-radial and non-oriented DEA model incorporating innovation output 
and multiple undesirable outputs, this paper measures the green production performance (GPP) of China’s 
industrial sectors from 2002 to 2015. And then the effect of implementing energy-saving policy on GPP is 
investigated through Quasi-difference-in-differences (Quasi-DID) method. The results show that China’s 
industrial GPP rises during 2002-2004 and then declines with fluctuations. Technology change (TC) is the 
dominant driver. Energy-saving policy positively affects industrial GPP in general yet further dynamic 
analysis reveals that such a positive effect remains unstable and finally manifests a reverse impact at the end 
of every five-year-plan period. Therefore, China should properly introduce market mechanisms, formulate 
comprehensive policy mix strategies to balance sustainable improvement of industrial economy and 
ecological environment. 

1 Introduction 
China has made remarkable achievements over the last 40 
years and emerged as the world’s second-largest economy. 
Characterizing with high investment and excessive 
consumption of materials, China’s economic growth 
brings about various environmental problems and thereby 
impedes its sustainable development. It is reported that 
China’s energy consumption reaches 4.3 billion tons of 
standard coal in 2016, of which coal consumption 
accounts for 61.9% [1]. Aiming at achieving the transition 
shifting from an extensive pattern to an intensive pattern, 
the Chinese government seeks for green production and 
more balanced development and targets energy saving and 
emissions reduction as a strategic deployment. 
Accordingly, measuring the bygone green production 
levels and assessing the effects of actualizing energy-
saving policies are indispensable and significant for 
industrial green transformation and upgrading. So far 
compulsory policies and targets are generally oriented to 
industry. The constraint indicators were first explicitly 
proposed in China’s 11th Five-Year Plan (FYP) in 2006 
instead of the expected ones in previous plans to control 
energy consumption. Yet the question that whether 
implementing these policies can accelerate the green 
production level in China’s industry deserves more 
profound researches. 

The studies regarding production performance are 
 
 

always focusing on economics and fruitful results have 
been made, however, ignoring the undesirable byproducts. 
Green production performance (GPP) are applied in many 
existing literatures by means of Malmquist-Luenberger 
(ML) index which illustrates the changes in green total 
factor productivity considering undesirable outputs to 
reflect the level of green development [2]. There exist 
many researches focusing on the effects of policies on 
GPP and some reveal that constraint policies affect 
industrial GPP significantly [1,2]. In summary, rich 
conclusions have been made in terms of the impacts of 
mandatory policies on regional GPP while the research 
conducting across industrial sectors is lacking. Moreover, 
most scholars only focus on the overall influences of 
policies or the effects of the same one policy with different 
enforcement strengths on GPP. In addition, little attention 
is paid to time-varying effect of the policy’s 
implementation.  

The contributions of this paper include three aspects: 
(1) Enriching the evaluation index system by introducing 
patents, sulfur dioxide (SO2), and chemical oxygen 
demand (COD) into outputs and thereby improving the 
measurement of GPP; (2) Investigating` the 
comprehensive effect of implementing of energy-saving 
policy on industrial GPP; (3) Tracing the time-varying 
effect of energy-saving policy on industrial GPP. 

The remainder of this paper is organized as follows: 
Section 2 presents the DEA model for measuring 
industrial GPP and the Quasi-DID model for evaluating 
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the impact of ESP on GPP. Section 3 reports the empirical 
results and discussions. Section 4 gives the main 
conclusions and policy implications. 

2 Methodology 

2.1 DEA model for measuring GPP 

We regard each industrial sector as a decision making unit 
(DMU), supposing that each DMU 1, 2,k K= …   uses N 
inputs (Capital stock (K), Labor force (L) and Energy 
consumption (E)), ( , , ) +

1 n Nx x x R= ∈   to produce M 
desirable outputs (Output value (O) and Patent application 
(P)), ( , , ) +

1 m My y y R= ∈  and I undesirable outputs (CO2, 
SO2 and COD), ( ) +

1 i Ib b , ,b R= ∈ . According to Zhou et 
al. [3] and Li et al. [4], we establish a global non-radial 
and non-oriented directional distance function (NNDDF) 
in the global environmental production technology 
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where ( , , )x y b T
n m iw w w w=   denotes a normalized weight 

vector, which is related to the numbers of inputs and 
outputs. ( , )x y bg g ,g g= − −  is a directional vector that 
indicates the change in direction of each index.  

( , )g x ,y b= − −   is a directional vector, ( , , )Tnx my ibβ β β β=  
is a vector of scaling factors, representing inefficiency for 
inputs and outputs. Similarly, we can construct the t+1th 
global NNDDF and tth, t+1th contemporaneous NNDDF 
( t

cD  and t 1
cD

+ ). Therefore, according to the definition of 
the Luenberger index, this paper defines the green 
production performance (GPP) as follows: 

( , , ; ) ( , , ; )G t t t t G t+1 t+1 t+1 t+1
c cGPP D x y b g D x y b g= −
 

   (2)                                           
0( 0)GPP GPP> <  means the improvement (deterioration) 

of green total factor productivity, according to Grosskopf 
[5], GPP can be decomposed into the sum of efficiency 
change (EC) and technology change (TC), as follows: 

1
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1( , , ; ) ( , , ; )t t t t t t t+1 t+1 t+1 t+1
c cEC D x y b g D x y b g GPP TC+= − = −
   (4)            

Furthermore, Fujii et al. [6] proposes that inputs and 
outputs are the sources of GPP. Based on the additive 
nature of NNDDF and Luenberger index, GPP can also be 
rewritten as follows 
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 (5)         

where xGPP  , yGPP  and bGPP   denote the contributions 

of inputs, desirable outputs and undesirable outputs to GPP, 
meaning input-saving effect, desirable-output-growth 
effect and emission-reduction effect, respectively. 

2.2 Regression model for quantifying the effect 
of ESP 

(1) Average effect of ESP. China’s “11th FYP” first 
stipulated the target of energy intensity reduction. Quasi-
DID method [2] is employed to investigate the effect of 
the ESP on GPP. In addition, considering that GPP may 
have the path dependence, we add the first-order lag of 
GPP ( it 1GPP − ) as the explanatory variable on the right side 
of the equation to capture the path dependence of GPP. 
The model is as follows: 

0 1 1 2 3

3

it it it t it

it i t it

GPP GPP EI I lnpe
X f f

α α α α
α ε

−= + + × +
+ + + +

      (6) 

where i  and t  imply the industrial sector and the time. 
itEI   represents continuous data on energy intensity, 

it tE I I×   means the implementation of ESP. tI   is the 
dummy variable, that equals to 1 in the period after policy 
implementation and equals to 0 in the period before policy 
implementation. itpe   is the energy price index, 
representing the effect of external energy market [7]. itX  
denotes other control variables; if   and tf   reflect the 
fixed effects of sector and time, respectively. itε   is the 
error term.  

 (2) Dynamic effect of ESP. We further decompose 
average effect in equation (6) to explore the dynamic 
impact. According to Yang et al. [2], the regression model 
is established as follows: 

2015

1 1 2

3

it 0 it t it t it
t

it i t it

GPP GPP CCP I lnpe

X f f

φ φ φ φ

φ ε

−= + + × +

+ + + +

   (7)          

Based on the relevant literature [2, 8] and the 
development status of China, we select the following 
control variables: 1) Industrial structure (IS): is estimated 
by the ratio of sector’s output in total industrial output; 2) 
R&D investment (rd): is measured by the ratio of internal 
R&D expenditures in sector’s output; 3) Learning by 
export (exp) is estimated by the share of total export value 
to the total sales value; 4) Energy structure (ecs): is 
measured by the proportion of coal consumption to the 
total energy consumption; 5) The technology spillover of 
foreign direct investment (fdi): is measured by the ratio of 
sales of foreign businesses to total sales value. 

3 Results and discussions 

3.1 Estimation results of GPP 

GPP is greater than 0 during 2002-2015, which means 
China’s industrial green total factor productivity continues 
to grow, the GPP tends to fluctuating declining after a 
transient ascending. From the view of its decomposition 
factors, TC dominates the basic trend of the GPP, with a 
contribution of 99.08%, on average, while the devotion of 
EC is relatively minor, only 0.09%. From the inputs and 
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outputs perspective, GPPy is the biggest driver, devoting 
95.22%. The contribution of GPPb is the second highest 
at 4.60%. However, the impact of GPPx is the weakest, 
only 0.18%. From its development trend view, industrial 
GPP is satisfied and grows faster in 2002-2004 because 
China’s join to the World Trade Organization (WTO), 
industrial production capacity continues to expand with 
economy and technology developing rapidly. GPP boosts 
with the increase of GPPy. However, after 2004, GPP 
declines, for China forces to accelerate the exit of tens of 
thousands of high-energy-consuming enterprises to 
eliminate backward production capacity [9], GPPy 
decreasing significantly. In particular, the financial crisis 
breaks out in 2008 and economy slows down as well as 
technological progress. Moreover, the influence of GPPb 
begins to be obvious in 2006 and the greatest reduction 
effect is achieved at 0.0438 in 2011, accounting for 21.33% 
of GPP. In addition, input-saving effect (GPPx) also 
appears to grow since 2004. 
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Figure 1. Average values of GPP and its components in China 

industry during 2002-2015 

3.2 Average effect of ESP  

It can be seen that coefficient of the lag_GPP is 
significantly positive, confirming the evident path 
dependence of industrial GPP, consistent with the study by 
Chen and Golley [10]. Energy price index produces a 
positive impact on GPP, because energy market 
contributes to the prosperity of the industrial economy and   
the increase in energy-saving effect to some extent [11].      
The influencing coefficient of ESP on industrial GPP is 
significantly positive, which suggests that the restrictive 
ESP since 2006 exerts a positive effect on industrial GPP. 
 

Table 2. Average effect of ESP on GPP, GPPx, GPPy, and GPPb 
Variable GPP GPPx GPPy GPPb 
lag_GPP 1.0597*** -0.4199** 0.5264*** 0.3762** 
CESP(EI*T) 0.3296** -0.5982* 0.2757*** 0.6244 
lnpe 0.6094*** -0.0679 0.1906** 0.2832*** 
IS 1.2827** 0.4485** 2.4087** 2.1436*** 
fdi -0.0759 -0.3260 -1.2609 -0.1512 
exp -0.0418 -0.0337 -0.2503 -0.1221 
rd 0.1483*** 0.0300 0.1533* 0.0823*** 
ecs -0.9181** -0.2492** -0.2711*** -0.3123* 
sector fixed Yes Yes Yes Yes 
time fixed Yes Yes Yes Yes 
F-statistics (P) 2111.82(0.0000) 9.73(0.0000) 164.27(0.0000) 17.04(0.0000) 
AR(1)test(P) -9.14(0.0000) -3.26(0.0001) -8.81(0.0000) 0.236(0.0019) 
AR(2)test(P) 1.83(0.0670) 0.83（0.4080） 0.44(0.6620) -1.16(0.2450) 
Sargan test(P) 13.80(0.1820) 7.87(0.6420) 8.20(0.2240) 6.44(0.2660) 

Significance: *P<0.1, **P<0.05, ***P<0.01 

 
ESP stimulates industrial companies to adopt technical 

and management measures to achieve the decline in 
energy input, followed by a fall in CO2 and pollutants, 
which is exactly in favor of advancing GPP. Meanwhile, 
several high energy-consuming enterprises are forced to 
withdraw from the market so that the market concentration 
would further be enhanced under ESP. However, to 
accomplish the energy intensity reduction target, 
industrial enterprises will urgently cut back energy input 
in a short run. The substitution among input factors will 
severely be strengthened through increasing input of other 
production factors, resulting in lower input efficiency. 
ESP’s implementation causes a significant inhibitory 
effect on GPPx. On the contrary, it plays an important role 
in promoting GPPy. On the one hand, the large amount of 
investment in alternatives ensure and maintain industrial 

output growth at a relatively high level, according to the 
statistical data, we find that the average annual growth rate 
of industrial output is still as high as 15.77% after 2006. 
On the other hand, ESP prompts companies to vigorously 
develop energy technologies, with China’s industrial 
patent applications measuring up to 8.50 times that of 
2006 in 2015. Table 2 demonstrates that ESP promotes 
emission-reduction effect (GPPb), however, it is not 
evident. The majority of carbon and pollutants emissions 
originate from the combustion and utilization of fossil 
fuels in industrial production. ESP’s implementation will 
bring in lower energy input, which is beneficial to a drop 
in the emissions of CO2 and pollutants. 
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3.3 Dynamic effect of ESP  

The ESP is promulgated in 2006. Within the three years of 
its enactment, its effect is not significant, however, 
showing a positive effect with an intensifying trend. ESP 
begins to be significant positive in 2009 but turns negative 
in 2010. During the “11th FYP” period (2006-2010), the 
effect of ESP shifts from insignificant positive to 
significant promotion, then turns to suppression. It can be 

seen the restrictive nature of ESP undergoes from weak to 
strong, then weakening. In the initial stage of the 
execution of energy intensity decline target, various 
industrial enterprises will energetically carry out energy-
conservation activities to achieve reduction goals. 
However, with the realization of energy-saving objectives, 
such a binding force gradually weakens. Statistics show  
 

Table 3. Dynamic effect of ESP on GPP, GPPx, GPPy, and GPPb 
Variable GPP GPPx GPPy GPPb 
lag_GPP 1.1448*** -0.2693*** 1.1213*** 0.9548*** 
lnpe 1.2301*** 0.0614* 1.0870*** 0.0531* 
Y06 0.1148 -0.6664 0.1345 -0.2442 
Y07 0.2045 -0.7923 0.2332 0.0546 
Y08 0.1623 -2.0431* 0.1547 -0.1263 
Y09 1.0297*** -2.9845** 1.0001*** 0.9306* 
Y10 -0.5183* -3.0945* -0.4389* 0.1375 
Y11 0.9489*** -2.6330 0.9101*** 0.2413 
Y12 0.9723*** -3.1071** 0.9396*** 0.2498 
Y13 0.3618 -4.0909** 0.3326 0.1691 
Y14 -0.1285 -4.4482*** 0.1715 0.2321 
Y15 2.9308* -3.8178** -0.8182* 0.0693 
IS 2.9308* 15.4082*** 2.0710** 1.0931* 
fdi -0.7452 -1.1067 -0.7102 -0.1261 
exp -0.0732 -0.8228 -0.0117 -0.0257 
rd 0.2822** 0.1900** 0.2739*** 0.0819* 
ecs -1.8039*** -2.8030* -1.5915 -0.0733** 
sector fixed Yes Yes Yes Yes 
time fixed Yes Yes Yes Yes 
F-statistics (P) 838.69(0.0000) 1.90(0.0170) 924.22(0.0000) 11.48(0.0000) 
AR(1)test(P) -6.85(0.0000) -9.32(0.0000) -7.06(0.0000) -6.34(0.0000) 
AR(2)test(P) 2.04(0.0560) -0.97(0.3300) -0.15(0.8820) 0.84(0.3990) 
Sargan test(P) 5.13(0.0770) 4.58(0.1010) 4.60(0.1000) 7.02(0.7230) 

Significance: *P<0.1, **P<0.05, ***P<0.01 

 
that in 2009, China’s industrial energy intensity decreases 
by 23.80% compared to 2006 levels, with the 20% 
reduction target accomplished ahead of schedule. As a 
result, the restraint effect of ESP becomes waning in 2010. 
During the 12th FYP period, the government redefines the 
energy intensity reduction target based on 2010 levels. 
Similar to effect of ESP in the “11th FYP” period, the 
restraint force of ESP experiences a process of from weak 
to strong then weakening. In 2013, industrial energy 
intensity falls by 23.00% compared to 2010 levels, the 
goal of reduction by 16% is fulfilled in advance. With 
respect to inputs and outputs, generally speaking, ESP has 
a significant inhibitory effect on GPPx, what’s worse, such 
an inhibitory effect becomes strengthened during the 11th 
FYP and 12th FYP period. ESP plays a significant positive 
role in promoting GPPy. However, it undergoes from weak 
to strong then to weak. In addition, ESP produces an 
insignificant positive impact on GPPb, the coefficient of 
ESP in most years is positive, yet not significant. Decline 
of energy intensity can abate carbon and pollutants 
indirectly, otherwise, its direct constraint effect on 

emissions reduction is weaker. 

4 Conclusions and policy implications 
Main findings are concluded as follows:(1) China’s 
industrial GPP shows the trend of circuitous downward 
after an ephemeral ascending. Technology change is the 
dominant driver for GPP’s fluctuation. (2) Energy-saving 
policy produces a positive effect on industrial GPP, 
however further dynamic analysis suggests that such a 
positive effect performs unstable and finally manifests a 
reverse impact in each five-year-plan period.  

Based on the results, we propose the following policy 
implications: (1) The Chinese government should focus on 
the overall goal of green development and formulate a 
systematic policy mix. The results show that energy-
saving policy promotes the improvement of the industrial 
GPP, however, with problem of insufficient stamina. The 
corresponding policy mix is indispensable for the green 
development of industrial sectors. Therefore, China needs 
to construct a more synthesized and systematic green 
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development policy system and establish balanced policy 
portfolios to achieve more all-around promotion of green 
development. (2) Combining constraint energy-saving 
policy with market-based policies tightly to facilitate the 
flexibility of companies in saving energy. China’s policies 
rely heavily on coercive measures and neglect the 
importance of market mechanisms. Hence, China should 
embrace industrial enterprises to optimize allocation 
efficiency by issuing market-oriented measures. 
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