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Abstract. This paper proposes a novel short-term air temperature prediction with three-layer Back 
Propagation Neural Network (BPNN) for the regional application of next 1-12 hours. With the continuous 
collection of eight real-time micro-climate parameters in the experimentation and demonstration stations in 
our university, the Multiple Stepwise Regression (MSR) is employed to screen the original historical data to 
find the parameter factors with greater contribution rate. On the basis of the Root Mean Square Error (RMSE) 
value evaluating the optimal fitting degree of the stepwise regression, the Levenberg-Marquardt (LM) and the 
Resilient Propagation (R-Prop) training algorithm are employed to construct a Combined BPNN (CBPNN) 
with two MSR inputs. Compared with the known micro-climate data sets, the Mean Absolute Error (MAE) 
is to evaluate the applicability of CBPNN prediction model. The experimentation shows that the MAE is 
within 4ºC in the next 12 hours. This proposal will be deployed in stations in our university for extreme 
weather warnings, and could be applied to some regional short-term parameter prediction for the future 
agricultural production service. 

1 Introduction 
Crop damages caused by extreme temperatures can 
generally cause crop damage and yield reduction, and is a 
serious matter to agricultural producers [1]. The Shaanxi 
Province is the largest apple producing areas in China, and 
also is the largest apple planting concentrated region in 
the world, which the total yield per year accounting for 
1/3 in China and 1/7 in the world. Apple fruit is one of the 
most sensitive crops to meteorological conditions, 
especially at the flowering period and mature period, and 
the great fluctuating of air temperature can reduce the 
yield and quality to certain extent [2]. Basically the fruit 
production region suffers with different extents of spring 
flowering freezing and autumn mature frost damage every 
year [3]. The damage loss extent is different due to the 
different micro-climate environment [4]. It is necessary to 
construct a prediction model of micro-climate parameter 
to reduce the local damage loss of yield and quality.  

The real-time micro-climate parameters collected at 
various experimental and demonstration stations in our 
University can be publicly accessed on the website and be 
downloaded for the any researchers of our University 
(sf.nwsuaf.edu.cn/index.html). All the micro-climate 
parameters of stations only are shown real-time data for 
users, and will be used for a stable and robust all-weather 
forecasting model with Artificial Neural Network (ANN). 
Here, this paper focuses on the accuracy of micro-climate 
prediction model to guide the production of agriculture. 

For the earliest applications of short term 
meteorological element forecasting with ANNs, the 

researchers of USA at first employed a Feed-Forward 
Neural Network (FFNN) prediction models which was 
superior to the traditional regressions [5]. In case of 
potential losses due to extreme cold and heat of crops and 
livestock in most of the south-eastern USA, Smith et al. 
[4] explored the role of Ward-style ANNs based on near 
real-time data in annual temperature forecasting. The air 
and dew point temperature predictions in Georgia with 
web-based ANN were employed for the Automated 
Environment Monitoring Network (AEMN) data [6-7]. 
With the ground-breaking applications of ANNs, the 
architecture of the ANNs plays a key role in the prediction 
capabilities.  

With the development and application of ANN models, 
except for USA, the other countries have developed the 
short term meteorological parameter warnings and 
predictions of relative models. Kaur et al. [8]developed 
five different ANN models to predict short-term wind 
speed for predicting power generation from wind turbines 
in Indian Electricity. Nogay et al. [9] developed a number 
of different ANN models with 60 neurons used in Mardin 
area in Turkey. Feng et al. [10] used a hybrid artificial 
neural network model combining air quality trajectory 
analysis and wavelet transform to study and predict the 
average concentration of PM2.5 in the next two days. 
Castaneda-Mirand and Castan [11] designed and 
implemented a multi-layer perceptron ANNs with the 
Levenberg-Marquardt (LM) backpropagation algorithm 
for greenhouse frost control in central Mexico. The 
researchers of China Research Institute of Water 
Resources and Hydropower [12] presented an ANN 
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model based on feed-forward back-propagation and 
improved by the LM algorithm to forecast the ice 
conditions of the Yellow River in the Inner Mongolia 
region. Most related researches of the meteorological 
elements predictions are having a particular significance 
in different hydrology, climatology and agronomics.   

Due to the practical requirements of apple fruit 
production industry, the micro-climate air temperature 
prediction with ANN models is presented as a regional 
production making-decision support, shown in Fig. 1. For 
the eight-element micro-climate data sets including air 
temperature, air humidity, soil temperature, soil moisture, 
total radiation, wind direction, wind speed, and rainfall 
factor, a Combined Back Propagation Neural Network 
(CBPNN) model using LM algorithm and Resilient 
propagation (R-Prop) training algorithm are designed. 
Compared with the traditional of Multiple Stepwise 
Regression (MSR) method, the key evaluation index of 
Mean Absolute Error (MAE) is employed to evaluate the 
fitness of prediction.  

 
Fig.1. The flowchart of short-term and regioanl micro-climate 

air temperature prediction with CBPNN models. 

At section two in this paper, the collection of data sets 
and prediction model design of MSR and BPNN are made. 
Section three carries out the MAE evaluation 
experimentation of MSR and CBPNN models. Section 
four concludes this paper. 

2 Methodologies  

2.1 Data Sets 

The micro-climate parameters are automatically collected 
every one minute at the various stations in our University 
and the average value of every parameter are stored every 
10 minutes. Due to the apple production technology and 
farming of Shaanxi Baishui Apple Experimentation and 
Demonstration Station (simplified as Baishui Station 
below) in our University could radiate and guide apple 
production in Loess Plateau which is the largest high-
quality apple fruit planting concentrated region in the 
world, the data set of Baishui Station is selected of totally 
over 60,000 records. The eight micro-climate factors 
includes air temperature, air humidity, soil temperature, 
soil moisture, total radiation, wind direction, wind speed 
and rainfall. The total micro-climate data is divided into 
training sets and test sets. The training sets contains the 

49,605 records; 80% of the total data. The test sets 
contains the 12,000 records; 20% of the total data. 

2.2 Prediction Model of MSR 

To effectively and accurately construct the short-term air 
temperature prediction model, the significant factors are 
selected to find the correlation between the factor data 
[13]. For the eight possible input variates, it is necessary 
to screen the significant factors from the eight possible 
micro-climate factors. Whereas the optimal regression 
equation with the selected variables based, the MSR 
analytical model is expressed as equation (1) as follows, 

𝑌𝑌 𝑌 𝑌� + β�𝑥𝑥� + ⋯ β�𝑥𝑥�           (1)      

where 𝑌𝑌  is the observation dependent variable; β� 
presents the regression constant; β�  is the partial 
regression coefficient of the independent variable 𝑥𝑥�; k is 
the number of independent variables, here k is eight. The 
values of the partial regression coefficients β�� β� and 
the regression constant β�  in the equation (1) can be 
calculated by the data analysis of the training samples.  

The Residual Standard Deviations Error (RMSE) is 
employed to evaluate the precision of the MSR model by 
comparing the deviation between the predicted and real 
data, and is calculated by equation (2) below： 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 ��
� � �𝑓𝑓� − 𝑦𝑦�)��

���             (2)            

where 𝑛𝑛 is the total number of the training data set, here 
it is 49,605; 𝑓𝑓�  is the predicted value; 𝑦𝑦�  is the actual 
observed value. 

After the upper limit of significance probability is set 
as 0.05, and the lower limit as 0.10, the MSR model is 
trained by the sample data sets. Obtaining the significance 
test of the MSR equation (1), the partial regression 
coefficients, the regression constants, and RMSE of the 
eight micro-climate factors for the 12 stepwise regression 
models between 1 and 12 hours are obtained, shown in 
Table 1 below. From Table 1, with the increasing of the 
prediction hour level, the RMSE of MSR model shows the 
trend of continuously increasing, and reaches the 
maximum value 4.2650 at the prediction level of 9h, 
where shows the worst fitting effect. The effect lies at the 
minimum RMSE of 0.9493, and stands at the initial 
prediction level of 1h. 

2.3 Prediction Model of CBPNNs 

From the Table 1, only the best prediction level of one 
hour could not meet the demands of actual practice 
because the MSR model is suitable for the linear 
relationship among the dependent variable and multiple 
variables. The BPNN with three-layer widely used has the 
ability to simulate any complex nonlinear mapping or 
function approximation [14]. Here according to Fig. 1, the 
input layer has eight variables of micro-climate elements, 
and the output layer one variable of air temperature. To 
reduce the impact of different dimensions of BPNN 
training and forecasting and to avoid the ANN unit 
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saturation [12], the samples data is normalized to [-1, 1] 
as equation (3) as follows: 

𝑦𝑦 𝑦 (���������)∗(������)
���������

+ 𝑦𝑦���         (3)  

where 𝑦𝑦  is the normalized variable, and 𝑦𝑦���  and 
𝑦𝑦��� are 1 and -1, respectively; 𝑥𝑥 is the initial variable, 
and 𝑥𝑥���  and 𝑥𝑥���  are the maximum and minimum 
value of the variable 𝑥𝑥 respectively. 

Table 1. The series of parameters of 12 MSR prediction model at level of 1-12 hours. 

Prediction 
Level 
(hour) 

Eight partial regression coefficient β of the input micro-climate factors 

Regression 
Constant 

β� 
RMSE Air  

Temperature 
 (°C) 

Air 
Humidity 
 (%RH) 

Soil 
Temperature 

 (°C) 

Soil 
Humidity 

 
(%VWC) 

Total 
Radiation 
 (W/m2) 

Wind 
Direction 

(o) 

Wind 
Speed 
 (m/s) 

Rainfall 
(mm) 

1 0.9008 0.0134 0.0868 -0.9798 0.0034 -0.0005 0.0830 -0.2565 -0.9080 0.9493 
2 0.7818 0.0256 0.2019 -2.2086 0.0060 -0.0011 0.1809 -0.4017 -1.6547 1.6491 
3 0.6542 0.0358 0.3323 -3.5540 0.0077 -0.0019 0.2780 -0.5216 -2.1620 2.2990 
4 0.5269 0.0436 0.4673 -4.9389 0.0085 -0.0027 0.3596 -0.6269 -2.4129 2.8794 
5 0.4084 0.0492 0.5980 -6.2954 0.0084 -0.0035 0.4255 -0.8065 -2.4402 3.3698 
6 0.3047 0.0527 0.7166 -7.5431 0.0076 -0.0043 0.4746 -1.0215 -2.2699 3.7542 
7 0.2199 0.0541 0.8178 -8.6337 0.0062 -0.0049 0.5007 -1.2138 -1.9431 4.0282 
8 0.1568 0.0540 0.8962 -9.5336 0.0044 -0.0054 0.5032 -1.3659 -1.4814 4.1938 
9 0.1166 0.0527 0.9493 -10.2251 0.0024 -0.0059 0.4828 -1.4334 -0.9288 4.2650 
10 0.1005 0.0507 0.9728 -10.6812 0.0004 -0.0064 0.4380 -1.4829 -0.2762 4.2625 
11 0.1090 0.0476 0.9669 -10.8771 -0.0017 -0.0069 0.3637 -1.5858 0.4590 4.2114 
12 0.1429 0.0434 0.9304 -10.7556 -0.0038 -0.0075 0.2706 -1.6568 1.2513 4.1280 

The LM and the R-Prop are employed to design the 
BPNN prediction model, where the LM has the fastest 
convergence performance to the non-constrained multi-
dimensional nonlinearity [15] and the R-Prop can 
effectively eliminate the partial derivative size [16]. The 
activation function between the input layer and the hidden 
layer is set as the hyperbolic tangent function of Tansig, 
and the activation function between the hidden layer and 
the output layer as the linear function of Purelin. With the 
BPNN trained with sample data sets, the prediction 
models between 1-12 hours are obtained. The MAE is 
used to measure the specific model accuracy [1], 
expressed in equation (4) expressed below, 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 �
� ∑ |𝑓𝑓� − 𝑦𝑦�|�

���            (4)                    

where 𝑓𝑓�  is the prediction value; 𝑦𝑦� is the actual 
observation value, and here it represents the test sample 
data; and 𝑛𝑛 is the total number of the data set. 

3 Experimentations and Discussions 
After the BPNN trained by the sample data, twelve 
prediction models at level of 1-12 hours are obtained. The 
twelve BPNN prediction models are tested with sample 
data of 12,000 records, and the MAEs of equation (4) are 
calculated to evaluate the precision of models. Compared 
with MSR prediction models, shown in Table 2, the 
BPNN prediction models only have the excellence at the 
prediction level of 4-6h and 9-12h, and both the prediction 
methods could have a little higher errors. The traditional 
BPNN is generally used for fitting the data, and should be 
optimized for this prediction. To achieve better prediction 
accuracy and to reduce the time cost, the constant 
adjusting of the number of hidden layers and nodes, the 
activation and training functions of the network should be 
taken to find out the optimal learning network.  

Table 2. The MAEs comparisons of MSR and BPNN prediction models. 

Prediction Model 
The MAEs at prediction Level(h) 

1 2 3 4 5 6 7 8 9 10 11 12 
MSR 0.7789 1.3757 1.9758 2.5295 3.0443 3.4742 3.8020 4.0228 4.1426 4.1842 4.1661 4.1127 

BPNN 0.7698 1.3599 1.9758 2.4754 2.9488 3.4157 3.6911 3.8211 3.9449 3.9960 3.9498 3.7483 

A newly Combined BPNN (CBPNN) model is 
proposed. According to the neural network structure of 
Fig. 1, the predictive value 𝑌𝑌  obtained by the MSR 
prediction model is used as a new input to this learning 
network. To increase the weight of the predicted value 𝑌𝑌 

in this learning network, the input layer of CBPNN model 
changes into ten input variables. The input vector 𝐃𝐃 𝐃 𝐃𝐃��, 
𝐃𝐃 𝐃𝐃𝐃𝐃 𝐃 𝐃𝐃𝐃 𝐃𝐃�,𝑋𝑋 �,𝑋𝑋 �,𝑋𝑋 �,𝑋𝑋 �,𝑋𝑋 �,𝑋𝑋 �,𝑋𝑋 �)�  represents in 
turn ten variables of prediction value (MSR prediction 
output 𝑌𝑌), prediction value (MSR prediction output 𝑌𝑌), air 
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temperature, air humidity, soil temperature, soil moisture, 
total radiation, wind direction, wind speed and rainfall. 
The combined neural network model is employed at eight 
prediction levels of 4-7h and 9-12h, which is the bold and 
filled grey in Table 2 and has a little higher errors. The 
activation functions employed at prediction levels of 1h 
and 2h are Tansig function and Purelin function and at the 
other ten prediction levels are Tansig function. The 
training functions employed at prediction levels of 1-3h 
become LM algorithm and at the other ten prediction 
levels are R-Prop algorithm. The experimentation verifies 
that this CBPNN model prediction models have higher 

accuracy than MSR models at levels of 1-12 hours, shown 
in Fig. 2.  

From the MAEs curves of Fig. 2, the errors of CBPNN 
prediction models are mostly smaller than it of MSR 
models. The average of MAEs of 12 prediction levels 
obtained by the MSR is 3.1341°C while the average of 
MAEs of 12 prediction levels obtained by the CBPNN 
model is 3.0081°C, where the CBPNN model can 
effectively improve the prediction accuracy of air 
temperature with an average reduction of 0.1260°C. At 
the prediction level of 10h, the MAEs reaches the highest, 
and the MAE of MSR model 4.1842°C and the MAE of 
the CBPNN model 3.9960°C.  

 
Fig. 2. The MAE comparison curves at predicted 12 hours. 

 
Fig. 4. The MAE comparison curves of prediction level of 24 

hours between MSR and CBPNN models. 

   
(a) Predict level at one hour (b) Predict level at ten hours (c) Predict level at twelve hours 

Fig. 3. Regression coefficient 𝑅𝑅 values at 1h, 10h and 12h predicted levels. 

The neural network model is used to achieve the 
optimal prediction performance by changing the number 
of hidden layers and nodes and the training functions. 
With the prediction level increases, the training function 
of R-Prop algorithm is superior to it of the LM training, 
shown in Fig. 3. Actually, the resilient 𝑅𝑅 value shows the 
trend of decreasing as the prediction level increases. From 
the scatter plot of air temperature predictions in Fig. 3, the 
resilient 𝑅𝑅 value of the CBPNN model at the prediction 
level of 10h reaches the lowest value of 0.56357, while 
the slope of the regression line of MSR model is 0.41 and 
the intercept of 14.  

Generally as the prediction level increases, the MAE 
of the prediction model is increasing while the prediction 
accuracy is reducing. However, actually the MAE of 
prediction level 11-12h shows a downward trend. With 

the experimentation of 24 hours prediction, Table 3 below 
shows the MAE of the next 24 hours prediction levels of 
MSR and CBPNN models, which reflects the parabolic 
downward trend with the prediction level increases, and 
its corresponding curve shown in Fig. 4. 

From the Table 3 and Fig. 4, if the prediction range 
within 24 hours, the average error of air temperature at 
level of 6-15 h is over 3°C, while the average error at the 
other level is less than 3°C.  

4 Conclusions 
This paper proposes a new CBPNN model to predict a 
regional and short-term air temperature with a level of 1-
12 hour. The contribution lies at the MSR output as a new 
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input to the BPNN, which can improve the prediction 
accuracy. The MAEs of CBPNN prediction models could 

be parabolic-like declining with the prediction level of 
hour’s increasing. 

Table 3. The MAEs comparisons of MSR and CBPNN prediction models at 24-hour predictive level.

With the experimentation of data sets collected at 
Baishui Station in our University, the CBPNN prediction 
model has more precisions and better convergence 
compared with BPNN or MSR model. This proposal will 
be deployed for micro-climate warning of extreme 
parameters and be extended for a regional short-term 
element forecasting decision to guide agriculture 
production. With this proposal, in the future we will 
explore the other parameter screening, data fittings, and 
growth parameter measurements. 
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The MAEs at prediction Level(h) 
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