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ABSTRACT 

Henry Problem (HP) still plays an important role in benchmarking numerical models of 

seawater intrusion (SWI) as well as being applied to practical and managerial purposes. The 

popularity of this problem is due to having a closed-form semi-analytical (SA) solution. The 

early SA solutions obtained for HP were limited to extensive assumptions that restrict its 

application in practical works. Several further studies expended the generality of the solution 

by assuming lower diffusion coefficients or including velocity-dependent dispersion in the 

results. However, all these studies are limited to homogeneous and isotropic domains. The 

present work made an attempt to improve the reality of the SA solution obtained for 

dispersive HP by considering anisotropic and stratified heterogeneous coastal aquifers. The 

solution is obtained by defining Fourier series for both stream function and salt 

concentration, applying a Galerkin treatment using the Fourier modes as trial functions and 

solving the flow and the salt transport equations simultaneously in the spectral space. In 

order to include stratified heterogeneity, a special depth-hydraulic conductivity model is 

applied that can be solved analytically without significant mathematical complexity. Several 

examples are proposed and studied. The results show excellent agreement between the SA 

and numerical solutions obtained with an in-house advanced finite element code. 

Keywords: Henry problem; Semi-analytical solution; Velocity-dependent dispersion; 

Stratified heterogeneity; Fourier series 

INTRODUCTION 

Henry Problem has always been important in theoretical and practical investigation of 

general concepts and characteristics of seawater intrusion (SWI). It is an abstraction of SWI 

in a vertical cross-section of a confined coastal aquifer perpendicular to the shoreline. A 

schematic representation of the HP is given in Figure 1. The most important aspect of HP 

stems from the existence of a semi-analytical (SA) solution (Henry 1964). This solution is 

obtained using the Fourier series method applied to the stream function form of the flow and 

salt concentration equations. This method combines the exactness of the analytical methods 

with an important extent of generality in describing the geometry and boundary conditions of 

the numerical methods.  

 

In the scope of previous works concerning the SA solution of the HP, several simplifying 

assumptions were applied to make the calculation of SA solution feasible. While all the 

studies deal with uniform diffusion coefficient, recently, Fahs et al. (2016) developed a new 

SA solution with velocity dependent dispersion. Anisotropy and heterogeneity are primary 

characteristics of real aquifers that the SA solutions of the HP do not account for. Thus the 

aim of this work is to address this gap by extending the SA of the dispersive Henry problem 

to heterogeneous and anisotropic domain. In order to address the heterogeneity and to model 
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it analytically, the Gardner exponential permeability function (Gardner 1958) was 

considered. This function is widely used for layered aquifers. It makes the handling of the 

space derivatives of permeability emerging in the process, much more applicable. The 

approach developed to get the SA solution is described in the next section. Then, the results 

of the SA solution are compared against an in-house finite element code throughout different 

test cases investigating the effect of anisotropy and heterogeneity. 

 

 
Figure 1. Schematic configuration of Henry Problem. 

The semi analytical solution 

The mathematical model of SWI is based on coupled variable-density flow and salt transport 

partial differential equations. Under Oberbeck-Boussinesq approximation and steady-state 

conditions the flow system is as followed: 
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where q is the Darcy’s velocity [LT
-1

];    the freshwater density [ML
-3

]; K the freshwater 

hydraulic conductivity tensor [LT
-1

] (diagonal with components Kx and Kz); h the equivalent 

freshwater head [L];   the density of mixture fluid [ML
-3

] and z is the elevation [L].  

The salt transport process can be described by the advection-dispersion equation: 
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Where c is the dimensionless solute concentration [-]; Dm the molecular diffusion coefficient 

[L
2
T

-1
];   the porosity [-], I the identity matrix And the dispersion tensor D is defined by: 
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where    and    are the longitudinal and transverse dispersion coefficient respectively [L]. 

Flow and transport equations are coupled via the linear mixture density equation: 

 

          (5) 

where          is the difference between the freshwater (  ) and saltwater (  ) density. 

The geometry of the aquifer is simplified to a rectangle of length ( ) and depth ( ). The 

freshwater recharge flux per unit of width imposed on the inland side is noted    [L
2
T

-1
]. 

By differentiating Darcy’s law with respect to x and z direction and eliminating pressure and 

applying stream function theory the system is results as followed: 
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where      
  

  
  and     

  

  
 and            is the anisotropy coefficient that 

corresponds to the anisotropic nature of the domain that is being studied in this work. The 

non-dimensional form of the Eq(6) is defined as follows:  
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where: 
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 is the local gravity number which compares the buoyancy flux to the inland 

freshwater flux (  ).  

In order to address the layered heterogeneity of the aquifer, the depth-hydraulic conductivity 

model is defined by the following equation: 

   ( )       
           ( )       

                                                                 (9) 

   

where      and      are the hydraulic conductivity at the bottom of the aquifer in x- and z- 

directions respectively.   is the rate of hydraulic conductivity change with depth.  

The non-dimensional form of the salt transport equation is presented as follows:  
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where     
   

  ⁄ and      
    

  
⁄ . 

The unknowns are expanded into infinite Fourier series that satisfy the boundary conditions: 
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where Am,n (resp. Br,s) are the Fourier series coefficients for the stream function (resp. 

concentration). Nm and Nn are the truncation orders for the stream function in the X- and Z- 

directions, respectively. Nr and Ns are the ones for salt concentration. The Fourier series 

expansions are then appropriately substituted in Eqs. (7) and (10). Then, a Galerkin 

treatment is applied with the Fourier modes as trial functions. This leads to the following 

system of equations (for flow and salt transport respectively): 
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where    (resp.   ) is the residual vector for the flow equation (resp. transport equation) 

and      is the Kronecker delta function. Np refers to the number of integration points used to 

evaluate the dispersion terms.   ,    and    are the integration weight and the coordinates 

of the integration points, respectively.     (            ) is the local gravity number at 

the aquifer bottom surface. 

In this work a new technique is developed to solve the system of equations in the spectral 

space (Eqs 13 and 14). With this technique the Fourier coefficients of the stream function are 

analytically calculated in terms of the salt concentration and the spectral transport equation is 

solved the Newton’s method, with only the Fourier series coefficients of the salt 

concentration as primary unknowns.  

 

RESULTS 

A FORTRAN code has been developed to solve the final system of nonlinear equations 

resulting from the Fourier series method. To examine the correctness of this code, we 

compared it against a full numerical solution obtained using an advanced in-house model 

(Younes et al. 2009). All the simulations of the numerical model are developed under the 

transient regime for a long duration to reach the steady-state solution. 

Two dispersive cases are considered using the same parameters as in Abarca et al. (2007). 

The first case deals with a homogenous domain (   ) while in the second one, the aquifer 

is assumed to be stratified (     ). Anisotropy is acknowledged with (       ). The 

non-dimensional parameters and the corresponding physical parameters used for these cases 

are given in Table 1. For the homogenous cases, oscillation-free solution has been obtained 

using 4,725 Fourier modes (Nm=15; Nn=90; Nr=20 and Ns=160). This is equal to the 

number of Fourier modes used in Fahs et al. [2016] for the isotropic domain. This indicates 

that the anisotropy does not affect the stability of the Fourier series solution. For the 

heterogeneous case, the same truncation modes. For the heterogeneous case, the same 

number of Fourier modes (4,725) leads to unstable solution with some unphysical 

oscillations at the aquifer top. In fact, in this upper zone, the local permeability is 5 times 

more important than at the aquifer bottom leading to stronger buoyancy effects. An 

oscillation-free solution has been obtained with 6,405 coefficients (Nm=15, Nn=90, Nr=20 

and Ns=240). Several runs confirm that heterogeneity affects only the truncation order of the 

concentration Fourier series in the x-direction. The SA results for both cases (homogenous 

and heterogeneous) are depicted in Figures 2 and 3, respectively. 

As mention previously, both test cases are simulated using an in-house numerical code. The 

physical parameters used in the numerical simulations are given in Table 1. The numerical 

isochlors for both test cases (homogenous and heterogeneous) are depicted in Figure 2 and 3, 

respectively. These Figures highlight the excellent agreement between the analytical and 
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numerical solutions. It should be noted that, with the new technique developed in this work 

for solving the HP in the spectral space, the solution can be obtained with a reduced number 

of unknowns. For instance, in the heterogeneous case, the final system is solved using 4,800 

unknowns instead of 6,405. 

Table 1. Non-dimensional and physical parameters used in the semi-analytical solution 

and the numerical model for the verification test cases. 

Numerical Model Semi-analytical Solution 

Parameters Value Cases Parameters Value Cases 

   [kg/m
3
] 25 Both cases   ̅̅ ̅̅  3.11 Both cases 

  [kg/m
3
] 1000 Both cases    5×10

-4
 Both cases 

  [m
2
/s] 6.6×10

-5
 Both cases    

  
 

 0.1 Both cases 

  [m] 1 Both cases    
  
  

 0.1 Both cases 

 [m] 4 Both cases    [-] 0.66 Both cases 

 ̅  [m/s] 8.213×10
-3

 Both cases   [-] 
0 

1.5 

Homogeneous 

cases 

Heterogeneous 

cases 

  [-] 0.66 Both cases    

 [-] 0.35 Both cases    

   [m
2
/s] 3.300×10

-8 
Both cases    

   [m] 0.1 Both cases    

   [m] 0.01 Both cases    

  [-] 
0 

1.5 

Homogeneous 

cases 

Heterogeneous 

cases 

   

 

 

 
Figure 2. Semi-analytical and numerical isochlors (10%, 50% and 90%) for the homogeneous 

case (   ). 

 

 
Figure 3. Semi-analytical and numerical isochlors (10%, 50% and 90%) for the heterogeneous 

case (     ). 
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CONCLUSION 

In this paper, the SA solution of the dispersive Henry problem is generalized to anisotropic 

and stratified heterogonous porous media. The stratified heterogeneity described with 

Gardner’s model is considered to derive the SA solution. A major contribution of this work 

is to derive the first SA solution of SWI with DDF model in an anisotropic and 

heterogeneous domain with velocity-dependent dispersion. The SA solution is useful for 

testing and validating DDF numerical models in realistic configurations of anisotropy and 

stratification. The different test cases in homogeneous and heterogeneous domain with 

diffusive or dispersive configurations have demonstrated excellent agreement between SA 

solution and numerical results. While in the most existing studies, the effect of anisotropy 

and heterogeneity is mainly discussed on the position of the saltwater wedge, the SA 

solution will be investigated (in future works) to provide a deeper understanding of these 

effects on several metrics characterizing SWI. 
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