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Abstract—State-of-charge (SOC) is one of the vital factors for the energy storage system (ESS) in the 
microgrid power systems to guarantee that a battery system is operating in a safe and reliable manner for the 
system. Many uncertainties and noises, such as nonlinearities in the internal states of a battery, sensor 
measurement accuracy and bias, temperature effects, calibration errors, and sensor failures, pose a challenge 
to the accurate estimation of SOC in most applications. This study makes two contributions to the existing 
literatures. First, a more accurate extended Kalman filter (EKF) algorithm is proposed to estimate the 
battery nonlinear dynamics. Due to its discrete form and ease of implementation, this straightforward 
approach could be more suitable for real applications on the ESS. Second, its order selection principle and 
parameter identification method are illustrated in detail. It can accurately demonstrate the characteristics of 
the lithium-ion battery to show the feasibility and effectiveness of the algorithm for the ESS. 

1 Introduction 
One of the most remarkable differences between 
traditional energy production and distribution systems 
and present ones is that most of the power generation is 
decentralized to smaller plants located near the end-use 
points called microgrids. A microgrid is a localized 
physical space that consists of distributed power 
generation, storage, and consumption. The need for 
achieving a balance between the electric power 
generation and the demand of consumers has added to the 
emergence of smaller power generation and demand 
environments, in which the adaptation of production to 
load can be performed much more dynamically due to 
their distributed smaller elements and the geographical 
proximity of all elements in the microgrids.  

The most important techniques is the energy storage 
components for using energy later, and the energy 
storage system (ESS) on the grid for various purposes, 
such as grid stability, peak shaving, and renewable 
energy time shifting. The batteries play a significant role 
in the microgrids. Due to the volatility, flammability and 
entropy changes, batteries have a potential to ignite or 
even explode when overcharged. The solutions to all 
these problems lie not only in battery technologies, but 
also the management systems for the batteries. The 
battery management system (BMS), which integrates the 
battery system with the rest of the power train, plays a 
vital role in improving the battery performance, safety, 
and reliability. Meanwhile, the accurate estimation of 
state-of-charge (SOC) is one of the main tasks of the 
BMS, which will help improve the system performance, 
reliability, and safety, and will also lengthen the lifetime 
of the battery. In fact, the precise SOC estimation of the 

battery can avoid unpredicted system interruptions and 
prevent the batteries from being over charged and over 
discharged, which may cause permanent damage to the 
internal structure of the batteries [1]. 

The SOC means the proportion of released or stored 
energy from all the battery energy storage. Only when 
the SOC is estimated precisely, the energy balance can be 
achieved without damaging the batteries. However, due 
to a battery's complex internal chemical and physical 
reactions, the SOC cannot be measured directly and 
multiple factors should be considered. Thus, it is difficult 
to estimate the SOC when the battery is working. 

The general approach for measuring the SOC is to 
indirectly estimate both the coulombs and current 
flowing in and out of the cell stack under all operating 
conditions and the individual cell voltages of each cell in 
the stack accurately [2]. The coulomb counting (CC) 
method, which measures the current flowing into and out 
of the cell, is the most commonly used estimation method 
[3], [4]. However, the integral calculation of the current 
flow has an accumulation error; with the increase in the 
operating time, the accumulation error will result in a 
larger SOC estimation error. The other normally used 
SOC estimation method includes the open-circuit voltage 
(OCV) method, neural network method, and so on. The 
OCV method is often used in the battery overhaul rather 
than the SOC estimation; neural network models are too 
complicated to train the physical model and to need a 
plenty of operating data [5]. 

The method presented in this study is the extended 
algorithm based on the Kalman filter, which is used to 
estimate the inner states of any dynamic system. The core 
of the extended Kalman filter (EKF) algorithm is to 
propose a precise state describe model, according to the 
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measurement data, to calculate the values of the objects 
with the recursive algorithm. Comparing to other 
algorithms, the EKF algorithm has its own advantages: 
even if there were errors in the system, self-correction 
can be down to a certain range and the optimal estimation 
value can be obtained. The EKF algorithm needs accurate 
state describe model and accurate measurement values. 

2 Modeling of lithium-ion battery 
The purpose of building a battery model is to establish 
the battery's internal state variables and external 
quantitative relation electrical characteristics, and to set 
up the mathematical model. Further, based on the 
external variables, such as battery voltage, current, and 
temperature, a battery model helps to calculate the 
internal state variables, such as SOC, internal resistance, 
and electromotive force. Many types of battery models 
were proposed to guarantee the precision in the previous 
literatures [2,4]. An equivalent circuit model [5] of them 
to represent schematically a chemical reaction inside a 
lithium-ion battery pack is shown in Fig. 1. The bulk 
capacitance (Cb) represents the battery pack storage 
capacity, and the surface capacitance (Cd) represents the 
battery diffusion effects to describe the cell's 
electrochemical polarization and concentration 
polarization, which reflects the battery transient response 
of charge or discharge. The resistances Ri and Rd 
represent the internal resistance and the polarization 
resistance, respectively. The voltages across the bulk 
capacitor and the surface capacitor are denoted by Vb and 
Vd, respectively. The battery pack terminal voltage and 
the terminal current are denoted by Vo and I, respectively. 
The parameters required for the battery model can be 
determined from the experimental data, where the OCV 
tests are performed upon the successive discharge of a 
battery by injecting the current pulses as described in 
section Ⅳ. 

 

Fig. 1. Equivalent circuit model for a lithium-ion battery pack 
 

This kind of model has a good dynamic performance 
and can simulate the dynamic characteristics of the 
lithium-ion battery accurately [6]. 

 According to the Kirchhoff's voltage and current laws, 
the capacitance voltage variation, and its current 
relationship, the characteristics of the model in Fig. 1 [4] 
can be expressed as follows: 
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Since the relationship of OCV and SOC for the 

lithium-ion battery is only piecewise linear in practice, 
the voltages across the bulk capacitor can be expressed as  

 

              dSOCkVb += * ,                                        (4) 
 
where the k and d coefficients are not constant and 

vary with the battery SOC and ambient temperature. 
Thus, they can be expressed as 
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These two equations (5) and (6) are indicated as a 

model of the state and observation equations for the 
lithium-ion battery pack.  

The curve graph of OCV based on the nonlinearity of 
the SOC can be obtained in Fig. 2. 

 

Fig. 2. OCV versus SOC curve graph. 
 

3 SOC estimation principle of EKF 
In case that the system's state equation is nonlinear, the 
Kalman filtering method cannot be used directly, i.e., the 
linearization system equation by using the Taylor series 
expansion is required; this type of linear equation for the 
nonlinear model of the Kalman filtering method is called 
the EKF method [4].  

 
According to (5) and (6), the system state equation 

can be written as 
 

        [ ]TxxX 21= , SOCx =1 , dVx =2 ,             (7) 

       Itu =)( , oVty =)( .                                           (8) 
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If the system input of a model is defined as u(t) = I 

and the output is defined as y(t) = Vo, then the battery 
model can be written as 

 

     wuxfx += ),( ,                                                 (9) 

               vuxgy += ),( .                                          (10) 
where,  
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In these formulas, w and v represent the system noise 

and measurement noise, respectively. For (9) and (10) of 
the nonlinear model, the model after linearization by 
using the Taylor series expansion is obtained. 
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For the digital computation of the linearized model of 

(13) and (14), the system equations for the continuous 
time equation should be expressed by the discretized time 
model, as represented in (19) and (20). 

       kkdkdk wuBxAx ++=+1 .                        (19) 

       kkdkdk vuDxCy ++=                               (20) 
 

where the parameters in both the equations are, 
 

        std TAIA += ,                                                (21) 

       std TBB = ,                                                       (22) 

       td CC = ,                                                          (23) 

       td DD = ,                                                          (24) 
 
where I is the unit matrix and Ts is the sampling 

period, respectively. 
As per the above equations, the Kalman filter is an 

optimal observer whose principle is illustrated in Fig. 3. 
The principle is to minimize the errors between the 
estimated and the measured outputs in real time, using a 
feedback that adjusts the uncertain variables of the used 
model [7]. By such a model, it is possible to observe the 
physical parameters of the model that are not accessible 
to measurements. The correction is weighted by a gain 
vector K that allows the correction of the dynamics and 
the performance of the filter. The gain is calculated at 
each iteration from the error predictions and uncertainties 
(noise) on the states and measurements. The filter 
dynamic control is then based on the initialization of the 
noise matrices of states Q and measurements R, as well 
as through the initialization of the matrix of error 
covariance P. 

 

Fig. 3. Principle block diagram of the Kalman filter. 
 
To realize the optimal observer as indicated in Fig. 3, 

the Kalman filter algorithm can be divided into two parts 
[7] as follows: 

• Predict system status, system output, and error 
• Correct the current state estimate value based on 

the system output value 
This takes place in two phases: the first phase has the 

initialization of the matrices P, Q, and R; and the second 
phase includes observation, which is composed of two 
steps at each sampling interval [8], as shown in Fig. 4. 
First, the algorithm predicts the value of the present state, 
output, and error covariance. Second, by using a 
measurement of the physical system output, it corrects 
the state estimation and error covariance. The core of 
EKF was to compare the predicted value and the 
measurement value, adjusting the Kalman gain. 
According to the size of the error, the gain will be used to 
calculate the next predicted value. The bigger the error, 
the greater the gain, and the bigger the estimated value 
will be corrected. Similarly, the lesser the error, the 
smaller the gain, the lesser the estimated value will be 
corrected. So, the EKF algorithm is applied to the SOC 
estimation for a lithium-ion battery pack.  
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Fig. 4. Computation steps of the EKF algorithm. 

4 Simulation and experiment 

4.1 Model parameter extraction 
All the parameters proposed in the model are the 
functions of SOC, current, and temperature. However, 
only the dependency of SOC and current is analyzed 
because of the aforementioned reasons. The previous 
researches have used electrochemical impedance 
spectroscopy (EIS) for extracting the parameter values. 
However, this technique cannot be utilized in practical 
applications, where the operation is much more dynamic 
and unpredictable. Another much simpler theory [9] 
behind the parameter extraction involves Ohm’s law, 
which relates the proportionality between the 
instantaneous voltage and current. However, this 
technique works well only if the time step used is smaller 
than the time constant of the associated reaction, so that 
the change in the state can be considered minimal. A 
much more advanced technique includes the application 
of the curve fitting tools [10] in MATLAB to identify the 
values of Ri, Rd, Cd, and Cb. The value of Ri is 
determined using the instantaneous change in the value 
of the voltage at the end of a discharge pulse. The 
technique proposed in this study is similar to the one as 
presented in [11]. The difference lies in the fact that the 
model in [11] does not consider the effect of the varying 
levels of the discharge currents. However, the proposed 
model in this study includes this effect. 

4.1.1 Pulse discharge test 

The pulse discharge test (PDT) includes the discharging 
of the battery pack by providing the current in the form 
of constant pulses. There is a rest time included between 
the application of two subsequent pulses as shown in Fig. 
5. The rest time is decided based on the settling of the 
OCV to steady state. The discharge pulses are supplied to 
the pack to reduce the SOC by 15% with each pulse. The 
duration of each pulse is calculated using the SOC 
dependency equation on the discharge current. The main 
aim of these tests is to extract the model parameters, Ri, 
Rd, Cd, and Cb. The PDTs are performed at varying pulse 
current levels to identify the effect of the discharge 
current on the model parameters. These tests are also 
used to determine the OCV-SOC curves. The discharge 

current values are decided based on the maximum current 
rating of the cell specified in the data sheet. 

 

Fig. 5. Pulse discharge voltage profile of the battery cells. 
 

4.1.2 Continuous discharge test 

The continuous discharge test (CDT) involves the 
discharging of a battery pack at constant continuous 
current levels as shown in Fig. 6. The current levels 
remain the same as for the PDTs. These tests are used to 
identify the effect of the different discharge currents on 
the capacity of the battery pack and of each cell. 

 

Fig. 6. Continuous discharge voltage profile of the battery cells 

4.2 Experimental results 
To simulate lithium-ion battery charge and discharge 
state in a normal use, and verify the effectiveness of the 
SOC estimation procedure, the following charging 
experiments have been conducted. Under a normal 
temperature, the battery is charged from OCV = 3 V 
reference state (namely, SOC 0% status) under a constant 
current until OCV = 4.2 V (namely, SOC 100% status). 
The state change, the error of the voltage, and the SOC 
waveform diagram are observed. The SOC estimation 
results and the expected integral values are basically the 
same, which explains that the EKF algorithm can achieve 
the accurate SOC estimation values. We evaluated the 
accuracy of the SOC estimation. The current load applied 
to the target lithium-ion battery is shown in Fig. 7. 
Charge and discharge produces the current load pattern 
shown in Fig. 8. This charging method is the constant 
current-constant voltage (CC-CV) charging topology. 
The experiments are discharged on the above current 
patterns until the battery SOC reaches 0.0%. The 
experiments are evaluated by comparing the estimated 
SOC by EKF that implements the MCU microcomputer 
and SOC calculated by the charging and discharging 

4

E3S Web of Conferences 57, 02006 (2018) https://doi.org/10.1051/e3sconf/20185702006
ICSREE 2018



machine. The SOC estimation accurately evaluates the 
absolute value by subtracting the true SOC from the 
estimated SOC in percentage. The true SOC is given by 
the SOC value, which is given by the highly accurate 
experimental equipment. The time transition of the 
estimated SOC and reference SOC is shown in Fig. 10. 
The average error for the SOC estimation experiment is 
0.15%. The experimental results show that the proposed 
EKF-based SOC estimation method is effective and can 
estimate the battery SOC accurately. 

 

Fig. 7. Discharge current load. 

 

Fig. 8. Charging and discharging current method. 

 

Fig. 9. SOC estimation results. 

5 Conclusion 
In this study, a new method for the SOC estimation based 
on the EKF algorithm has been presented for the ESS in 
the microgrids, after obtaining the relationship of the 
lithium-ion battery SOC and OCV. First, the parameters 
of the lithium-ion battery model are confirmed, and then 
these parameters are plugged into the state and 
observation equations. The measured current and voltage 
are used in equations. Further, through the iterative 
calculation of the EKF equations and constant updating 
of the system status, an accurate estimation value can be 
obtained ultimately. This type of EKF calculation 
algorithm has been validated through the simulation and 

experiments. Thus, the SOC estimation based on the EKF 
algorithm is effective and accurate. If the difference 
between the noise value in equations and the actual noise 
value is substantial, the estimated value is difficult to 
converge to a reasonable range. Estimation of the 
influence of noise in the algorithm is the next step in the 
research direction. 

This method may be applied for an accurate 
estimation of SOC to improve the ESS performance, 
reliability, and safety, and to lengthen the lifetime of the 
battery on ESS in the microgrid.  
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