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Abstract. Within the last decade, domestic energy management has gained a lot of attention. As the 
complexity of the solar thermal system in terms of the number of system components and energy sources 
increases, understanding how to manage the cooperation of all the components in order to improve the 
global efficiency measurements is of crucial importance. Here, the question is how to define an optimal size 
of the main components in a solar thermal system in order to minimize system cost. Unlike the existing 
approaches, we propose the use of a novel algorithm called Gravitational Search Algorithm (GSA) to 
analyze the accurate sizing of energy components, i.e. collector size, tank volume and Auxiliary Power Unit 
(APU). The objective is to maximize solar fraction, minimize the energy consumption and installation costs 
subject to constraints. Our proposed GSA model is evaluated and compared with one of the most well-
known algorithms, Particle Swarm optimization (PSO) taking into account the fundamental system 
characteristics. Numerical results show that our proposed methodology significantly improves energy 
efficiency and reduces operational cost of the solar thermal system in contemporary built environment. 

1 Introduction 

With the advent of renewable energy, human beings 
have tried to overcome several severe limitations, 
including a limited supply of fossil fuels, high cost and 
carbon dioxide pollution. One of the most popular and 
fastest-growing sources of renewable energy is the solar 
energy which is available for local use in building 
heating, cooling, hot water supply and power production. 

It also has the potential to meet most of the modern 
world energy demand by effectively integrating with 
local building components. Indeed, in order to phase out 
fossil fuels and reduce the related 2Co  emissions, solar 
energy is introduced as one of the most promising 
sources which can be used to provide hot water as well 
as environmental heating energy (a.k.a. solar 
combisystems [1]). These systems are, in fact, derived 
from the combination of common heating systems with 
solar collectors. 

"Task 26" was a project initiated by the International 
Energy Agency (IEA) which conducts investigation on 
solar combisystems indicates that "if the direct use of 
solar energy is to make a significant contribution to the 
heat supply, it is necessary that solar-heating 
technologies must be developed and widely applied over 
and beyond the sole field of Domestic Hot Water (DHW) 
preparation"[2]. 

In particular, this research has focused on a solar 
combisystem installation that satisfy both DHW and 
Space Heating (SH) requirements at the same time. Solar 
combisystems are relatively complex and their 
performance depends on many parameters, such as, 

orientation and tilt angle of solar thermal collectors, 
weather conditions, DHW usage profiles and so on [3]. 
Therefore, optimization techniques are found to be an 
efficient approach to get the most out of solar thermal 
combisystems. 

Existing approaches on the solar combisystems 
mostly demonstrated the impact of geographic location 
[4] and the use of different HW load profiles [5] on solar 
fraction and energy consumption of the system. Also, 
two popular optimization techniques being used lately 
are Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO). Authors in [6] used GA technique 
in order to minimize the payback time of a solar 
domestic hot water heating system. Authors in [7] also 
investigated how to optimize large solar domestic hot 
water systems with respect to solar heat cost. 
Furthermore, in [2], authors applied PSO to discuss the 
optimal sizing of the main components of a solar thermal 
system in order to provide heat for both DHW and SH 
needs. 

However, unlike the existing approaches, in this 
paper, we propose a novel approach which, according to 
a comparative study in [8], outperforms other well-
known evolutionary algorithms including Particle 
Swarm Optimization [9], and Genetic Algorithm (GA) 
[10] . 

Hence, in this paper, we consider a typical mid-sized 
house located in Kerman, Iran, and propose a 
methodology to find the optimal component sizes for a 
solar combisystem. The simulation architecture is 
conducted via TRNSYS and MATLAB, using 
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MATLAB as the main software that calls TRNSYS for 
the iterations. 

To summarize, the primary contributions of this work 
are as follows: 
• We formulate a mathematical model, propose an 

optimization framework with the aim of minimizing 
the system cost in terms of energy consumption, 
installation cost and maximum solar fraction, taking 
into account collector size, storage tank volume and 
Auxiliary Power Unit (APU). 

• We provide the main differences between GSA and 
PSO, encode the framework into a GSA model and 
define its fitness function to minimize the system 
objective. 

• Finally, an evaluation of the proposed model is 
conducted by extensive simulations and compared 
with one of the current state-of-the-art evolutionary 
algorithms, PSO, to demonstrate how accuracy and 
system convergence of our algorithm affect the 
efficiency of domestic energy management in solar 
combisystems. 
The rest of the paper is organized as follows. In 

Section 2, we describe a typical combisystem model and 
its assumptions. In Section 3, we formulate the problem. 
In Section 4, we present the proposed GSA optimization 
framework aligned with its all essential parameters. 
Section 5 evaluates the simulation results, and, finally, 
Section 6 concludes the paper. 

2 A solar thermal combisystem model 
Designing a solar thermal combisystem implies, first, 
selecting a configuration, and then sizing all its main 
components. Fig. 1 shows the setup scheme of the solar 
thermal combisystem used in this research. This 
residential solar combisystem, proposed in [4], will be 
used as our initial design solution, where the multi-
objective optimization framework is used for the 
selection of a configuration and its main components 
sizing. However, seven out of the 21 generic solar 
combisystem configurations considered by "Task 26" 
utilize more than one storage tank, most of the related 
works make an assumption of only one tank [3]. Thus, in 
this research, we follow Lund et. al. [4] and assume also 
hot water within storage tanks for space heating 
requirements too. 
 

 
Fig. 1. Schematic diagram of a typical residential solar 
combisystem [4] 

Both solar collector and APU are associated to this 
storage tank. The loads are specified by the DHW and 
SH demands. The load profile for DHW is generated as 
in [5], which considers a mean consumption of 200 /l d  
and a load temperature of 45°C. 
In fact, providing energy for space heating is a bit more 
difficult to determine.  

Because it is correlated to the specific ambient 
temperature and building insulation. In our area of 
interest, the average temperature is collected from 
Worldwide Meteorological Organization (WMO: 
408410) with Latitude and Longitude specified as 
30.25N  and 56.97E respectively. Also, the energy 
consumption of a typical residential building during a 
period of one year is collected and provided as in Fig. 2. 

 

 

Fig. 2.Temperature and Energy consumption analysis for the 
area of interest. 

 
Without loss of generality, for any given area of 

interest, since the precision of the simulations depends 
on the availability of realistic data of solar system 
parameters, e.g. irradiation and humidity, the collected 
monthly mean values of data from the closest weather 
stations from WMO, illustrated in Table 1, can be 
represented more accurately in hourly manner with the 
same statistical properties as the measured data [11]. 

Table 1. Kerman Radiation Data (WMO: 408410) 
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Table 2. Relevant system pricing factors 

 

3 Problem formulation 
Generally, every optimization problem formulation is 
composed of at least three components: (i) objective 
functions, (ii) a set of decision variables, and (iii) a set of 
constraints for the objective functions and decision 
variables. More particularly, in our case, we intend to 
determine an optimal solar combisystem design by 
finding the optimum feasible sets of values of decision 
variables which, in turn, minimizes the function vector 

( )F x , while taking all the constraints into account. The 
goal is to minimize a general function : nf R R→  with 
respect to system parameters which can be achieved as 
follows: 
 

 
 
where 1 2 3( ) [ ( ), ( ), ( )]F x f x f x f x= and { nX x= ⊂  ∣ 

, {1,..., }}j j jl x u j n≤ ≤ ∈  represent the objective function 
vector and the decision vector respectively; ,α β  and 
γ  are weighting factors applied to the objective 
functions in order to adjust the importance of each 

objective; S  indicates the decision search space; n  
denotes the number of decision variables where in our 
model 3n = , and, jl  and ju  identify the lower and 
upper bound of the j -th decision variable, respectively.  

For instance, assuming collector size as a decision 
variable, we can define the lower and upper bound for 
this variable between 1 and 40 (List of input variables is 
provided based on [2] in Table 3). 

Determining an optimal solar combisystem design 
implies finding a set of values of the decision variables 

*x S∈  which optimizes the multi-objective function 
vector ( )F x , taking into account all the constraints. In 
order to capture all the related quantities in the cost 
function, our objective vector is defined to maximize the 
solar fraction 1( )f x , to minimize the total amount of 
consumed energy 2( )f x , and to minimize the installation 
cost 3( )f x . It is worth noting that to maximize an 
objective function by a minimization function, we can 
simply choose a negative value for the weighting factor 
α . 

 

Table 3. Input variable set 

 
 

Our proposed methodology is evaluated based on the 
GSA meta-heuristic optimization formulation [12]. GSA 
was originally derived from Newton's theory of gravity 
and mass interactions to solve optimization problems. 
According to the comparative study [8] , the authors did 
show that GSA performs better than other well-known 
evolutionary algorithms including Particle Swarm 
Optimization (PSO) [13], and Genetic Algorithm (GA) 
[10]. In the following, we discuss how the algorithm 
works and then, evaluate the proposed methodology. 

4 The Proposed methodology 
To evaluate the performance of the proposed approach, 
we first explain how GSA algorithm operates; then, we 
discuss how effectively our approach responds to the 
system variables in the solar combisystems. 

4.1 Background on GSA Modelling 

In this section, the structure and main principles of GSA 
[12] are briefly described. Recently, GSA has gained 
more popularity due to its robustness and effectiveness 
(e.g. [8],[14]). 

It was originally derived from Newton's theory of 
gravity and mass interactions to solve optimization 
problems. GSA is made up of particles (objects) that 
interact with each other by the gravity force. The 
performance metric of particles are measured by their 
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masses. Particles try to move forward towards the 
heavier particle's mass under the gravity force law. This 
force pushes the global movement of all particles. Each 
particle indicates a solution to the problem. Thus, the 
heavier the particle mass is, the better the solution will 
be. For the algorithm, in order to work properly, two 
parameters, gravitational and inertia masses, should be 
set with appropriate values. While executing GSA 
algorithm, during iterations, particles get attracted to the 
heaviest particle mass. At the end, the heaviest particle 
in the search space represents an optimal solution to the 
problem. More precisely, suppose a system with n  
masses in which the position of i th mass is presented as 
follows: 

 

1( ,..., ,..., )d n
i i i iX x x x=  

where d
ix  indicates the position of i th mass in the d th 

dimension. The force of each mass j acting on mass i  at 
time t  can be calculated as: 

( ) ( )
( ) ( ) ( ( ) ( ))

( )
pi ajd d d

ij j i
ij

M t M t
F t G t x t x t

R t ε

×
= −

+
 

where ( )G t  represents gravitational constant at time t , 
( )piM t  and ( )ajM t  represent passive and active 

gravitational masses of agents i  and j  respectively. ε  
indicates a small constant, and ( )ijR t  indicates the 
Euclidean distance between masses i  and j .  

In order to add stochastic characteristic, GSA 
multiplies the sum of all forces exerted from other 
masses with a random number in the range of [0,1] as 
follows: 

1,

( ) ( ) ( )
n

d d
i ij

j j i

F t rand j F t
= ≠

= ×∑  

By using the total force, acceleration of each mass i  
at time t  can be measured by the law of motion: 

( )
( )

( )

d
d i
i

i

F t
a t

M t
=  

where ( )iM t  indicates the inertia mass of i . Moreover, 
based on the law of motion, mass dynamics consist of 
velocity v  and position x . The velocity of mass i  at 
time 1t +  is measured as the fraction of velocity at time 
t , plus its acceleration, which can be formulated as: 

( 1) ( ) ( ) ( )d d d
i i iv t rand i v t a t+ = × +  

Also, its position at time 1t +  is calculated as: 
( 1) ( ) ( 1)d d d

i i ix t x t v t+ = + +  
The gravitational constant ( )G t  is a function initialized 
at the beginning of the algorithm and decreased over the 
time lapse to control search accuracy. It is defined as: 

0( ) ( )current

max

iter
G t G exp

iter
γ= × − ×  

where 0G  is the intial value and γ−  is the constant 
control parameter. currentiter  and maxiter  denote the 
current and maximum number of iterations, respectively. 

 Notice that mass value has direct relation with the 
mass attractiveness. Heavier masses are more attractive 
than the lighter ones; thus, they move slower and absorb 
lighter masses to themselves. Considering the fitness 
value of mass i  at time t  denoted by ( )ifit t , the 
following equations are used to update the gravitational 
and inertial masses: 

 
( ) ( )

( )
( ) ( )

i
i

fit t worst t
m t

best t worst t
−

=
−

 

 

Fig. 1. GSA Algorithm Procedure 
 

 

1

( )
( )

( )

i
i n

j
j

m t
M t

m t
=

=

∑
 

where for a minimization problem, ( )best t  and ( )worst t  
are defined as: 

{1,..., }( ) min ( )j N jbest t fit t= ò  

{1,..., }( ) max ( )j N jworst t fit t= ò  
For the sake of simplicity, we illustrate GSA 

procedures in Fig. 3. 

4.2 Comparison of GSA with PSO 

Particle Swarm Optimization (PSO) is one of the well-
known meta-heuristic algorithms in optimization 
problems. We will show that our proposed methodology 
with GSA performs even better than PSO. In this section, 
in order to fully understand how GSA works, the main 
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differences between GSA and PSO are identified as 
follows: 
• However, in both algorithms, GSA and PSO, the 

optimization is acheived by the movement of masses 
in the search space, the movement startegy is 
different. 

• In PSO, particle's direction is identified using only 
two position values, pbest  and gbest  ; while in GSA, 
the direction of a mass is identified by the total force 
achieved by all other masses. 

• PSO does not take the quality of solutions and the 
fitness values into account during the update 
procedure, while the force in GSA is proportional to 
the fitness value. 

• In PSO, updating is performed without taking into 
account the distance between solutions, while the 
force in GSA is reversely proportional to the distance 
between solutions. 

• In order to update velocity, PSO consumes memory 
to store the values of pbest  and gbest  . However, 
GSA is a memory-less algorithm and takes into 
account only the current position of masses. 

 
Fig. 2. Objective function vs. Population size 

5 Experimental results 
In this section, the effectiveness of the proposed 
approach is evaluated via simulation. The building solar 
thermal behavior is initially modeled by TRNSYS v.17 
software. 

Also, in order to technically evaluate the efficiency 
of GSA, we will compare our methodology with the PSO 
approach presented in [2]. Generic parameters of 
simulation are set as follows [12]. Maximum iteration is 
set to 1000. Initial value of gravitational constant 0G  is 
set to 100. In PSO, correction factors 1c  and 2c  are set 
to 2, and Inertia value (ω ) is assigned with the value of 
1. Plus, all the relevant installation factors for component 
pricing are selected from Table 2. For both algorithms, 
results are averaged over 50 runs and the average, best 
and worst solutions are also provided. 

An important factor in implementation is population 
size. As the population size represents number of masses, 
larger population size results in a better solution. 

However, increasing population size impose more 
complexity to the system and, as a consequence, requires 
more time to complete the execution. To find an 
appropriate value for population size, Fig. 4 is provided, 
in which best, worst and average-case GSA solutions for 
population size of range 8 to 22 is measured. As 
illustrated, with the increase in population size, we 
notice better results in terms of system performance (i.e. 
the lower the better; as we are aiming to minimize the 
objective function). However, as population size 
increases, it adds up more complexity to the system. 
Hence, without loss of generality, we set the population 
size for all cases as 10. Also, to validate our approach, 
the average, best and worst solutions for the 
minimization function are compared in case of both GSA 
and PSO algorithms. As demonstrated in Table 4, our 
proposed GSA method achieves better results over 50 
runs than PSO. 

 

Table 4. GSA vs. PSO optimization of objective function 
values over 50 runs 

 
 
Investigations reveal that the average case for 

optimal cost function is reduced by over 20% for GSA at 
a faster convergence rate with higher degree of accuracy 
as compared with PSO. This preliminary results 
highlight the potential of this methodology, thereby 
improving the domestic energy management system in 
solar thermal combisystems. 

6 Conclusion 
In this paper, we targeted optimal sizing problem for 
solar combisystem and defined an effective optimization 
model to answer the fundamental question of finding the 
optimal size of the main components of a solar thermal 
system to go one step further towards efficient energy 
management. The analysis was performed based on a 
solar thermal combisystem for a typical mid-sized 
residential building in Kerman, Iran. We proposed the 
use of GSA algorithm to analyze the accurate sizing of 
energy components, i.e. collector size, tank volume and 
Auxiliary Power Unit (APU). The objective was to 
maximize solar fraction, minimize the energy 
consumption and installation cost subject to constraints. 
Our proposed GSA model was evaluated by comparing 
with one of the most well-known algorithms, Particel 
Swarm optimization (PSO) taking into account the 
fundamental system characteristics. 

Numerical results demonstrated that our algorithm 
can significantly improve energy efficiency and reduce 
operational cost of the solar thermal system in 
contemporary built environment. 
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