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Abstract. A randomized algorithm for computing the invariant zeros of the electric energy system as a 

dynamical system with many inputs and many outputs (MIMO system), specified in the descriptor form, is 

proposed. Definitions of invariant zeros are carried out by randomizing the original MIMO system and it 

reduces to a generalized eigenvalue problem for a numerical matrix. The application of the algorithm is 

illustrated by the example of calculating the invariant zeros of the linear model of the United Power System. 

1 Introduction 

The main object of practical calculations is the 

linearization of nonlinear descriptor mathematical 

model.  Thus, equations [8] are considered for nonlinear 

dynamic system. 
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where xn
x R  – state variables vector;  zn

z R  – 

parameter vector; u R
rО  –  input stimulus vector; 

r
u R  –  output quantity vector. Formula for vector 

functions f , g  and h  is defined by system element 

mathematical models, measurement and correcting units. 

Standard approach to llinearization (1), (2) connects 

with the procedure of Taylor expansion of vector 

functions f  and g  in small neighbourhood of steady-

state process with 0x , 0z , 0u  coordinates.  
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where 0 ' xn
xx x x R , 0 '' zn

xz z z R ,  

0
ruu u u R , 0

myy y y R  – 

deviation of corresponded vectors; (*)0  – corresponded 

partial derivative, estimated in coordinates chosen. 

Equation linearization (1) – (3) at a point of steady 

state motion gives linear descriptor (algebra-differential) 

equations 
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Hereafter for the purpose simplification of equations 

writing, index «0» of partial derivative is omitted. 

When Jacobi matrix is invertible, equations (7), (8) 

can be reorganized into state space form 
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If matrix 
g

z
 is singular, then conversion to equations 

(10) will not exist. However, even in case of invertibility 

of
g

z
, the problem of conditionality of the matrix 

happens in practical calculations. For condition number 

cond 1
g

z
                         (11) 

of matrix 
g

z
 is close to singular matrix and 

mathematical model  (10) becomes  «stiff» in relation  to 

minute calculation errors and variation of parameters. To 

put it differently, the mathematical model (10) in case of 

correctness of inequation (11) is ill-defined from A.N. 

Tihonov [1, 8].  

If additional measures aren’t taken, all calculations 

using the model (10), including controllability and 

observability analysis, will lead to serious errors. 

However, generally the method given comes across 

number of significant difficulties. Nonstrictly speaking, 

improvement of condition of matrix 
g

z
 will be attended 

with deterioration in condition of matrices in (10). The 

alternative is the usage for calculations of original 

linearized descriptor model (7), (8). 
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2 Invariant zeros definition 

Let us introduce the following notation of block vector 

and matrix: 
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where 
xnE  – identity matrix of order x xn n ;

x zn n n . Then descriptor system (7)–(8) can be 

written over in more standard form 

( ) ( ) ( ), ( ) ( ),
dx

t x t u t y t x t
dt

E A B C           (12) 

where ( ) nx t R  – state vector, ( ) ru t R  – input 

vector, ( ) my t R  – output vector. 

Define: 

Definition [1]. Complex frequency 
*

, where  

column rank of matrix 

*

0
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C
                               (13) 

Is decreasing, is called invariant zero. 

In (13) C  – complex variable; 0 – zero matrix of 

order m r  ; C  – complex plane. 

Invariant zeros are defined from the condition [10] 
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of full «blocking» of signal transmission both  eigen 

component and forced component of dynamic motion, 

i.e. for 
*  there are such vectors 0x  и 0u , that 

system output  reaction equal to zero. Thus, the problem 

of determining of invariant zeros of the system (12) 

resolves oneself into eigenvalue generalized problem in 

the general case of rectangular pencil matrix 

0

A E B

C
.                                (15) 

The search of Invariant zeros for large dynamic 

systems ( 1n ) comes across number of significant 

calculation difficulties. Calculation errors and 

calculation problems of zeros of generalized pencil 

matrices [11] play a crucial role in here. Therefore new 

approaches to development of computing algorithms are 

needed.  

3 Randomized squaring 

Rule of thumb calculation of invariant zeros of 

descriptor system (12) connected with so called dynamic 

system squaring up.  

Suppose m r  (number of outputs of a system is 

more that number of inputs). Let us introduce into 

consideration the descriptor system 

*( ) ( ) ( ), ( ) ( )C
dx

t x t u t y t x t
dt

E A B T C , (16) 

where r m
C RT  – full row rank matrix. 

The assertion, driven by verbal proof, is valid similar 

to [9]. 

Theorem 1. Set of invariant zeros of descriptor 

system (12) is always a subset of a set of invariant zeros 

of squared descriptor system (16), but not vice versa. 

Suppose hereafter r m  (number of inputs of a 

system is more that number of outputs). Consider the 

descriptor system 

*( ) ( ) ( ), ( ) ( ),B
dx

t x t u t y t x t
dt

E A BT C   (17) 

where m r
B RT  – full column rank matrix. 

The assertion dual to theorem 1 is valid. 

Theorem 2. Set of invariant zeros of descriptor 

system (12) is always a subset of a set of invariant zeros 

of squared descriptor system (17), but not vice versa. 

Lemmas 1, 2 Simply, that squaring operation 

generally puts into the system new zeros. This must be 

considered for choice of CT  and BT  matrices. The 

randomisation procedure, proposed by authors, is one of 

methods of solution for a choice of CT  and BT  matrices. 

Let us introduce into consideration randomization 

operator Randr m , which generates full rank matrices of 

order r m  with normal law distributed elements. Also 

suppose Orthr m  – orthogonalization operator for full 

rank matrix of order r m .Then  

Orth Randr m r m                            (18) 

– operators composition, which action result is a 

randomized orthogonalization full rank matrix. 

Let us also specify  – set of invariant zeros of the 

system (12), 
* 

– set of invariant zeros of squared 

descriptor system. To be specific hereafter it's as if 

m r  and и squared descriptor system is of the form of 

(16).  

Suppose *, 1,2,...i i – sets of invariant zeros of 

squared descriptor systems, where  
( )

Orth Rand
i

r m r mCT .                    (19) 

On the analogy of [12] it may be shown, that 

intersection of all sets of invariant zeros of squared 

systems 
*, 1,2,...i i , coincides with the set of 

invariant zeros of the given system . 

4 Evaluation of invariant zeros of large 
electrical power system 

Let us find the solution of evaluation problem of 

invariant zeros of large electrical power system, 

composed of 25 electrical power plants. Mathematical 

model of electrical power system in phase coordinates 

«phase angle - generator slip» in form (12) has matrices 

of following orders: 
50 50 50 25 20 50 50 50, , ,R R R RA B C E .  (20) 
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Portrait of Jacobi matrix A is shown on fig. 1. To put 

it differently, there is control system on each of 25 

power stations. Measurement of phase coordinates is 

performed on-line only on 20 power plants with 

synchronized vector meters included in mode parameters 

monitoring system. 

Thus, pencil matrix (15) is rectangular and has order 

of 70×75 in this case. By using orthogonalization and 

randomization operators let us generate a set 

25 20 25 20, 1,..., Orth Randi kT ,           (21) 

and then construct square pencil matrices 

50

20 20
, 1,..., .

i
i k

0

A E BT

C
.              (22) 

Matrix eigenvalues computational results (22) for 

500k  (i.e. 15 000 eigenvalues) in form of their 

generalized portrait are shown on fig.1. 

 

 
Fig. 1 – Eigenvalues of matrices (22) 

 
Fig. 2 – Eigenvalues of matrices (22) in D area 

 

Research of generalized portrait shows that there are 

three groups of tight accumulations in D area, which 

could be characterized as invariant zeros candidates. 

Accumulation centres match up complex frequencies, on 

which the matrix (15) of considered electrical power 

system model has close to zero minimal singular values, 

i.e. the matrix is close to loss of its rank. This is the 

practical invariant zero «indicator» 
*
.Thus, considered 

complex frequencies can be undertaken as electrical 

power system invariant zeros (20). 

From physical standpoint estimated invariant zeros 

match up modal forms (mode) of oscillations, on which 

«blocking» of analyzed electrical energy system is 

happens. This is reflected in the fact that, firstly, it is 

impossible to reestablish conditions of other 5 power 

plants, by the information from phasor measurement 

units (PMU), installed as was shown before on 20 power 

plants. Secondly, the sudden loss of efficiency of 

stabilizing PI and PID controls, which use the given 

signals of mode parameters monitoring system. 

5 Conclusion 

Invariant zeros directly connects with controllability and 

observability of dynamic system, including principle 

possibility of PI, PD and PID control law synthesis and 

realisation and servocontrol as well. Analysis of 

Invariant zeros of large dynamic systems, to which 

modern electrical power systems belong, comes across 

number of significant calculation difficulties, where 

calculation errors and calculation problems of zeros of 

generalized pencil matrices play a crucial role. Thus, 

new approaches to development of computing 

algorithms are needed. 

The randomized squaring procedure is proposed in 

the report, allows calculating efficiently invariant zeros 

of dynamic system, given in descriptor form. 

Invariant zeros can be matched up with modes of 

oscillations, on which «blocking» of analyzed electrical 

energy system is happens, that is reflected in the fact 

that, it is impossible to reestablish conditions by the 

information from synchronized phasor measurement 

units of electrical power system elements (loss of full 

observability) and due to the sudden loss of efficiency of 

stabilizing PI and PID controls, which use given signals 

for electrical power system stabilization (loss of full 

controllability). 
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