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Abstract. The paper considers the development of the idea of diakoptics as applied to the calculation of the 

steady-state modes of energy system’s complex electrical networks. The well-known goal of diakoptics is to 

obtain the equations of state for the dedicated part of the system, the study of which is much simpler than 

the study of the initial system and can be achieved by improving its steady state equations. Technique for 

dividing a complex-closed system into a set of uncomplicated subsystems was developed based on the 

inverse form of nodal equations. Analytic expressions for the intersection circuits obtained based on 

identical equality of voltage at the nodes of the system division into subsystems are proposed. Using the 

example of 110kV network calculation, the technique for determining the matrixes of generalized 

parameters of the dedicated subsystems, the sizes of which depend on the number of their broken link is 

shown. Analytical determination of the equality condition of the voltage of subsystems intersections nodes, 

allowed analyzing a complex closed network by bringing it to an equivalent open.   

1 Introduction 

The essence of the method of diakoptics is to solve tasks 

with a large number of variables in parts, by which 

properties the basic characteristics of the original system 

get restored. 

Each subsystem, determined using the unmating 

method is analysed and calculated separately, then a 

solution for the entire system is determined based on 

tensors of the partial solutions joints [1].  

As a result of the initial system unmating, an 

additional system- circuits of intersections is formed. All 

the parameters arising because of separation are 

collected in this system. Through the circuit of 

intersections, a link is established between old and new 

parameters using the coupling equations. Moreover, each 

subsystem, which research is much simpler than the 

research of the original system, is analysed separately, 

then the particular solutions are joined step by step until 

a solution of the original system is obtained [2, 3].  

In some works [4, 5], in the process of iterations, in 

addition to the matrixes of generalized parameters for 

individual subsystems, there are also matrixes the order 

of which determined by the number of boundary nodes 

of the entire set of subsystems can be very high. 

Standard methods of forming matrixes of generalized 

parameters that cannot be determined directly by the 

scheme are practically unacceptable because of the 

excessively large volume of computations [6]. Applying 

the properties of matrix math, for example, dividing 

matrixes into blocks can significantly reduce the amount 

of the computational process. In this case, the inversion 

of a single matrix of large order is replaced by the 

inversion of several matrixes of lower order, which leads 

to a significant reduction in the number of computational 

operations. However, the recalculation of the matrixes of 

the generalized parameters of the subsystems, 

corresponding to the restoration of broken links remains 

complicated. These shortcomings were overcome by the 

development of the method of diakoptics by a number of 

authors [7, 8]. 

For the first time, it was suggested that the schemes 

be cut by nodes, and not by branches, preserving all 

branches of the scheme. At the same time subsystems 

were allocated in such a way that they were connected in 

series, forming a highway or radial circuit connected to 

the slack node.  

This approach made it possible to form subsystems 

of approximately similar sizes, by increasing the 

necessary number of sub graphs of the initial system 

graph. At each step of the computational process, 

equivalent matrixes of generalized system parameters are 

used. They have a low order, corresponding to the sizes 

of individual subsystems, and the matrix is calculated 

only once at the stage of formation of conditionally 

constant information. One of the main advantages of the 

above approach is the provision of a favourable 

convergence condition for the computational process, 

since the links between the subsystems are not violated 

at any stage of this process [9-11]. 

The approach developed below is fundamentally 

different in that the network nodal voltages determined, 

as a result of individual calculation of individual 

subsystems, will be as they would be at the boundaries 
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of broken links without dividing into parts of the original 

system. Such an approach can be implemented on the 

basis of the inverse form of the nodal voltage equations. 

2 Inverse form of the nodal voltage 
equations 

By transforming the known equations of state of 

arbitrary complexity electrical networks, we obtain a 

matrix equation for the nodal voltage drops with respect 

to the matrix of driving currents distribution coefficients, 

which has the following form [11-13]. 

                          tU = C Z CJbD
,  (1) 

where C - rectangular matrix of a complex of current 

distribution coefficients; Zb - diagonal matrix of the 

complex of scheme branches resistances; 

J  - column matrix of the complex of driving currents; t - 

matrix transposition sign.   

The matrix of current distribution coefficients is 

determined based on all trees of the directed graph of a 

complex electrical network, and is used as initial data for 

calculating its steady-state modes [14-16]. 

3 Conditions for the equality of the 
subsystems intersections voltage 
nodes 

Complex-closed circuit can be reduced to an open form 

by cutting the nodes. The choice of the node-cutting 

place can be arbitrary, the main thing is that all contours 

are destroyed and the resulting open circuits remain 

connected to the basic node. The advantage of the 

proposed approach is that to obtain open networks it is 

necessary to break considerably fewer links, since 

cutting one node can replace the cutting of several 

branches incident to this node.   

The conditions for the equivalence of the response of 

the original complex scheme and the open sub schemes 

at the nodes of their intersections can be established 

based on the multiport network shown in Fig. 1. 

 
Fig. 1. Multiport network. 

 

Suppose that, as a result of cutting the first k-nodes, a 

branched open circuit is obtained, where each cut point 

is replaced by two fictious-points provided with 

additional indexes (‘ and ”). Thus, the original complex 

system is divided into two subsystems consisting of an 

open circuits’ scheme.  

The relationship between the initial and new 

disturbances at the intersections nodes of the subsystems 

is established based on the first Kirchhoff law, which 

will be written in the matrix format in the form: 

 

                                   J + J = Jр . (2) 

 

New circuit responses at the subsystems intersections 

nodes are determined based on position principle, in the 

form of a sum of subsystems responses caused by new 

disturbances applied to the subsystems intersections 

nodes and disturbances of the subsystem applied to uncut 

nodes, which are calculated on the basis of matrix 

equations:  

            t tU = C Z C ' J + C Z C ' Jb bр р р nΔ n
, (3) 

            t tU = C Z C J + C Z C Jb bр р р nΔ n
, (4) 

where J , J - column matrixes of fictitious currents 

applied to subsystems intersections nodes;   

J , J"
n n

- column matrixes of driving currents, uncut 

nodes of subsystems; C ,Cр р  - matrixes of distribution 

coefficients of fictitious nodal currents of subsystems; 

C , Cn n  - matrixes of current distribution coefficients of 

the subsystems uncut nodes; Z , Z
b b

 - diagonal matrix of 

the branches of the corresponding subsystems; 

t tС Z С , С Z Сb bр р р р  - matrixes of the system 

functions of resistance with respect to the subsystems 

intersections nodes; t tC Z C , C Z Cb bр n р n  - matrixes 

of system resistance functions with respect to the 

subsystems uncut nodes.  

Response of the circuit of open subsystems 

intersections will be equivalent to the response of the 

initial system circuit at the equality of voltage vectors at 

the subsystems intersections nodes obtained as a result of 

traversing different branches:    

 

                                   U' = U"
Δ Δ

, (5) 

 

equating the right-hand parts (3), (4): 

 

t tC Z C J - C Z C J =b bр н р nn n

t t= C Z C J' - C Z C J"b bр р р р

 

or 

             t tC Z C J' - C Z C J" = Ub bр р р р n
, (6) 

 

where U = U" - U
n Δn Δn

 - algebraic difference of 

nodal voltages drops caused by currents of uncut nodes 

of subsystems; tU = C Z C ' Jbр нΔn n
 - nodal voltage 

drops caused by currents of uncut nodes of the 

subsystem with the index ('); tU" = C Z C "Jbр nΔn n
 - 

the same, the subsystem with the index ("). 
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Determination of the equivalence conditions for the 

responses of the initial system and the systems obtained 

as a result of cutting the nodes reduces to determining 

new disturbances that satisfy the equalities of the 

responses of the subsystems relative to the nodes of their 

intersections. For this purpose, we make up a system of 

matrix equations (2) and (6): 

 

              

J +J =Jр

' " "- 't tC Z C J - C Z C J =Ub bр р р р Δn

, (7) 

 

where the required parameters are new distributions, 

,J J  applied to the subsystems intersections nodes.   

The system (7) can be written in the form of a matrix 

equation: 

 

          

JE E рJ
Ч =t t "- 'J(C Z C ) -(C Z C )b b Uр р р р Δn

, (8) 

 

where Е is the unity diagonal matrix; 

Е Е

t t(C Z C ) -(C Z C )b bр р р р

 - a square, nonsingular 

matrix of the size that is equal to the number of fictitious 

nodes of intersections circuit.   

Then the solution (8) is written as: 

 

        

-1
JE E рJ'

= Чt t "- 'J" (C Z C ) -(C Z C )b b Uр р р р Δn

. (9) 

 

If we use the properties of partitioning the matrixes 

into blocks, then the solution of system (6) can be 

substantially simplified by eliminating J variables. After 

simple transformations, the system (7) reduces to the 

form: 

 

                              ZJ" = U
ΔΣ

, (10)  

 

where 

t tZ = -( C Z C "+ C Z C ')b bр р р р  - square, nonsingular 

matrix of the size that is equal to the number of nodes of 

the original system intersections circuit;  

"- ' tU = (U - C Z C ' J )bр рΔΣ Δn р
- column matrix of 

fictitious nodal voltage drops.  

The solution of the matrix equation (10) 

 

                              
-1

J = Z U
ΔΣ

 , (11) 

is simpler relatively to "J  than the solution of the 

matrix equation (9). 

 

To solve (11), we need to calculate the inverse matrix 

1Z , the size of which is equal to the number of cut 

nodes, which requires less labor than determining the 

inverse matrix in expression (9).  

The values of the remaining desirable variables are 

determined by the formula: 

                                J' = J - J , (12) 

After determining the fictitious currents of all the 

subsystems intersections nodes, we can investigate the 

behavior of the initial system based on the modes of the 

dedicated subsystems. 

In the general case, the source scheme can be divided 

into n subsystems. Then, to determine fictitious currents 

at the nodes of their intersections, the following 

expression is true: 

JрJ'

"- 'J" U
Δn

J'" = Ч
...

...
…

nJ n-1UΔn

E E E … E

t t(C Z C ) -(C Z C ) 0 … 0b bр р р р

t tЧ (C Z C ) 0 -(C Z C ) … 0b bр р р р

_ _ _ _ _

nt t(C Z C ) 0 0 … -(C Z C )b bр р р р

,(13) 

where 

nn-1 n nt tU = U - U = C Z C ЧJ - C Z C ' Jb bр n р nΔn Δn Δn n n
 - 

algebraic difference of nodal voltage drops caused by the 

currents of uncut nodes of the corresponding subsystems. 

4 Calculation of a complex network by 
bringing it to equivalent open 

As an example, we will consider the design diagram of 

the 110 kV electric network shown in the figure 2. с 

задающими токами:  J 0.16 0,05i;1 J 0.27 0,05i;2   
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Fig. 2. The design diagram (a) and the directed graph of 

the 110 kV network (b). 

 

As a result of cutting the nodes at points 1, 3, a 

branched, open network graph shown in Fig. 3 was 

obtained 
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Fig. 3. Graph of open sub schemes (') and ("). 

 

Each cutting point is replaced by two fictitious 

points, provided with additional indices (' and "). The 

driving nodal currents at fictitious points are arbitrarily 

redistributed under the condition: 

 

                               
J' +J" =J1 1 1

J' +J" =J3 3 3
,  (14) 

 

The modes of the open circuits will be equivalent to 

the regime of a complex-closed circuit subject to 

identity: 

 

                              
U' =U"Δ1 Δ1

U' =U"Δ3 Δ3
, (15) 

 

The values of the fictitious currents (14) ensuring the 

identity conditions (15) are determined on the basis of 

the matrix equation (7), which in the open form is 

written in the following form: 

 

' -1J1 1 0 1 0
'J 0 1 0 13

= Ч
" 6.6+19.9i 0 -(23+41.44i) -(6.8+16.24i)J1

0 13.5+21i -(6.8+16.24i) -(31.1+54.04i)"J3

0.16+0,05i 0.628+0.382i

6+4,2i 4.211+2.999i
Ч = ,

1.024+4.725i -0.468-0.328i

1.024+4.725i 1.789+1.201i

 

where 
1 0

0 1
E - diagonal unity matrix;  

J1J =p
J3

- column matrix of driving currents; 

J =0.16+0,05i;1 J =6+4,2i.3 - total currents of cut nodes; 

 

' '
0 1 0 6.6 19.9 01

' 1 1
0 0 1 0 13.5 214

Z itC Z Cp b
Z i

 matrix of node resistance of the scheme with respect to 

the cut nodes with indices ('); 

 

"
Z 0 0 1 02

1 0 1tC Z C " = Ч 0 Z 0 Ч 0 1 =p b 3
0 1 1

0 0 Z 1 15

"
23+41.44i 6.8+16.24i

=
6.8+16.24i 31.1+54.04i

  

matrix of node resistance of the scheme with respect to 

the cut nodes with indices (").  

 

J =0.27+0,05i2  -uncut node driving current;  

 

1.024+4.725i 0 1.024+4.725i" '
U = U - U = - =
Δ n n 1.024+4.725i 0 1.024+4.725i

- algebraic sum of nodal voltage drops from currents of 

uncut nodes; 

"
Z 0 0 02

1 0 1" "tU = C Z C "ЧJ = Ч 0 Z 0 Ч 0 =p b n 3n n 0 1 1
0 0 Z J5 2

"
1.024+4.725i

= ;
1.024+4.725i

 

' 'tU = C Z C ' Ч J =p b nn n

Z 011 0 1 0 0 0
= Ч Ч Ч = ;

0 1 0 1 0 00 Z
4

 

C = 1 1р , 
1 0 1

C =р 0 1 1
- matrix of open circuits 

fictitious currents distribution coefficients; 
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1 0
C =n 0 1

, 

1 0

C = 0 1n
1 1

- matrixes of distribution 

coefficients of currents of uncut nodes of subsystems;  

0
J =n

0
, 

0

J = 0n

J2

- matrixes of the driving currents of 

uncut nodes of the corresponding subsystems. 

 

If we use the matrix equation (10), then to determine 

the fictitious currents J , we write the formula, which in 

expanded form looks as:  

-1"J -29.6-61.34i -6.8-16.24i1
= - Ч

" -6.8-16.24i -44.6-75.04iJ3

1.043+1.184i -0.468-0.328i
Ч = ,

8.224-177.975i 1.789+1.201i

 

where 

" ' Z +Z Z Z 02 5 5 1t tZ = - C Z C - C Z C = + =p b p p b p
Z Z +Z 0 Z5 3 5 4

-29.6-61.34i -6.8-16.24i
= ;

-6.8-16.24i -44.6-75.04i

, 

'" tU = U - C Z C ЧJ =p b pn p

Z 01.024+4.725i 1 0 1 0 0.16+0,05i1
= - Ч Ч Ч =

0 Z1.024+4.725i 0 1 0 1 6+4,2i4

1.043+1.184i
= .

8.224-177.975i

For the remaining unknown currents, the following 

expression is true:  

"J -J' " 1 1
J = J - J = =
p p p "J -J3 3

0.16+0,05i -0.468-0.328i 0.628+0382i
= - = .

6+4,2i 1.789+1.201i 4.211+2.999i

 

As can be seen, the values of fictitious nodal currents 

obtained by different methods turned out to be equal 

among themselves.  

The analysis of the modes of the source scheme after 

the determination of fictitious currents at the subsystems 

intersections nodes, is performed on the basis of 

calculations of open circuits which matrix of current 

distribution coefficients are equal to: 

1 0 0

C =(C C )= 0 0 1p p n
1 1 1

;  
1 0

C =(C C )=p n 0 1
 

then, the node voltage drops of the scheme of the 

individual subsystems provided with indices ('and') are 

defined as:  

'U 6.6+19.9i 0 0.628+0382i -3.468+15.012iΔ1
= Ч = ;

' 0 13.5+21i 4.211+2.999i -6.118+128.92iUΔ3

 

"UΔ1 1 0 1 16.2+25.2i 0 0
"U = 0 0 1 Ч 0 24.3+37.8i 0 ЧΔ2

" 0 1 1 0 0 6.8+16.24iUΔ3

1 0 1 0.628+0382i -3.468+15.012i

Ч 0 0 1 Ч 0.27+0,05i = -4.17+32.115i ,

1 1 1 4.211+2.999i -6.118+128.92i

 

where 

'
I 1 0 0.628+0382i 0.628+0382i1

= Ч = ;
0 1 4.211+2.999i 4.211+2.999iI

4

 

"
I
2 1 0 0 0.628+0382i -0.468-0.328i

I = 0 0 1 Ч 0.27+0,05i = 1.789+1.201i .
3

1 1 1 4.211+2.999i 1.591+0.923i
I
5

 

The correctness of the calculations can be verified by 

the identity conditions for the intersection points: 

                                 
U' =U"Δ1 Δ1

U' =U"Δ3 Δ3
 

5 Conclusions 

1. A method was developed for dividing a system based 

on the equality of the voltage of the nodes of the 

subsystems intersection circuits;  

2. Nodal voltages of the subsystems intersection circuits 

are formed directly according to the scheme.  

3. The reduction of a complex closed network to an 

equivalent open network greatly simplifies the 

calculation algorithms of its steady-state modes. 
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