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Abstract. Time redundancy is a method of increasing the reliability and efficiency of the operation of 

systems for various purposes, in particular, energy systems. A system with time redundancy is given 

additional time (a time reserve) for restoring characteristics. In this paper, based on the theory of semi-

Markov processes with a common phase space of states, a semi-Markov model of a two-component system 

with a component-wise instantly replenished time reserve is constructed. The stationary reliability 

characteristics of the system under consideration are determined.  

1 Introduction  

Most modern large systems have high reliability, but 

they are characterized by a significant impact of operator 

errors (the human factor) on the functioning and 

efficiency of the system. Time redundancy reduces the 

impact of such errors by providing additional time (a 

time reserve) to eliminate them without affecting the 

operation of the system. 

Time redundancy [1-9] is a method of improving the 

reliability and efficiency of systems, in which the system 

in the process of functioning is given the opportunity to 

spend some additional time (time reserve) for restoring 

characteristics. For systems with time redundancy, a 

malfunction of the system is not necessarily 

accompanied by a system failure, since it is possible to 

restore the system's operability for a standby time.  

A time reserve is called instantly replenished if the 

same time is allocated for the restoration of operability 

after the failure of any element, regardless of the number 

of previous failures and the time spent on their 

elimination. At the end of the recovery, such a time 

reserve is immediately replenished to the original level 

[1-3]. 

Time reserve in the systems of a power engineering 

[10-12] can be created by increase in power (efficiency, 

a channel capacity) the generating inventory extracting 

inventories, subsystems of transport of energy resources, 

electricity transmissions and other constituents of 

systems of a power engineering, by creation of internal 

stocks of the made or transported production, 

introduction of parallel devices for increase in total 

capacity, use of the functional inertance of systems and 

restricted speed of development of the processes caused 

by adverse effects of various physical nature. 

Time redundancy is used in gas transmission systems 

in which underground gas storage is the source of the 

time reserve; in the electric power industry, the time 

reserve is realized at the expense of high-capacity energy 

storage devices [10, 11].  

 

 

In connection with this, problems arise in 

determining the capacities of storage devices and their 

locations.  

In this paper, based on the theory of semi-Markov 

processes with a common phase space of states [13-18], 

a semi-Markov model of a two-component system with a 

component-wise instantly replenished time reserve is 

constructed. Stationary reliability characteristics of the 

system are found, the effect of the time reserve on the 

characteristics obtained is analysed.  

2 Description of the system functioning  

The system S , consisting of two components, time to 

failure of which are random variables (RVs) i  with the 

distribution functions (DFs) ( )iF x , a restoration times 

are RVs i  with DFs ( )iG x , 1,2i  . Each 

component of the system has a random instantly 

replenished time reserve i  with DF ( )iR x . RVs i , 

i , i  are assumed to be independent in aggregate, 

having finite mathematical expectations; DFs ( )iF x , 

( )iG x , ( )iR x  have distribution densities ( )if x , 

( )ig x , ( )ir x . 

The time reserve starts to be used at the time the 

component begins to recover. The failure of system S  

occurs when both elements are restored and the time 

reserve for each element is completely spent. It 

continues until the restoration of one of the failed 

elements, while the time reserve of the restored element 

is instantly replenished to the level i  (instantly 

replenished time reserve). 
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Fig. 1. Time diagram of the functioning of the system S . 

 

3 Semi-Markov model building  

To describe the functioning of the system S , we use the 

semi-Markov process ( )t  [7-10]. We introduce the 

space of states of the form: 

1 2{1, : ( , ), 0},Е idx d d d x                      (1) 

where 1,2i   is the number of the component in which 

the state change occurred. Component 
kd  of the vector 

d  describes the physical state of the element with the 

number k : 

0, if k component is in failure,

1, if k component is operational,

1, if k component is restored and

functions due to the time reserve.

k

th

th
d

th

       

     

 
       

     

 
The continuous component x  indicates the elapsed 

time since the last change in the system state. The time 

diagram of the functioning of the described system is 

shown in Figure 1.  

We construct the Markov renewal process (MRP) 

{ , : n 0}n n    that describes the functioning of the 

system S . 

We define the transition probabilities of the 

embedded Markov chain (EMC) { : n 0}n  . Introduce 

the notation:  

( ) 1 ( )F t F t  , 
2, 1,

1, 2.

i
i

i

 
 

 
. 

1. Let us consider the case of states 1 2id d x , 1id  , 

1
i

d  . 

In this case, the following transitions are possible: 

a) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

1id   , y x . The transition probability density in this 

case is calculated from the formula: 

1 2

1 2

( ) ( ) ( )
,

( )

id d y
i i i

id d x
i

g y x R y x F y

F x
p

   
   (2) 

b) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

0id   , y x . The transition probability density in this 

case has the form: 

1 2

1 2

( ) ( ) ( )
,

( )

id d y
i i i

id d x
i

r y x G y x F y

F x
p

   
   (3) 

c) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

1
i

d   , 0y  . In this case, the probability density of 

the transition is 

1 2

1 2

( ) ( ) ( )
.

( )

id d y
i ii

id d x
i

f y x G y R y

F x
p

  
    (4) 

2. Let us consider the case of states 1 2id d x , 

1 2 0d d  . 

In this case, the following transitions are possible: 

a) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

1id   , y x . The transition probability density is 

calculated by the formula: 

1 2

1 2

0 0

0

( ) ( ) ( ) ( )

,

( ) ( ) ( )

i i i i
id d y

id d x

i i i i

r t g y x t dt r t G y t dt

P r t G x t dt

p
 

 

 



  



 

 



 (5) 

b) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

1
i

d   , 0y  . The transition probability density will be: 

1 2

1 2

0 0

0

( ) ( ) ( ) ( )

.

( ) ( ) ( )

i ii i
id d y

id d x

i i i i

r t g y x t dt r t G y t dt

P r t G x t dt

p
 

 

 



  



 

 



 (6) 

3.  Consider the case of states 1 2id d x , 
1 2 1d d  . 
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a) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

1id   , y x . The transition probability density in this 

case is calculated from the formula: 

1 2

1 2

( ) ( ) ( ) ( )
,

( ) ( )

id d y
i i i i

id d x
i i

g y x R y x G y R y

G x R x
p

   
   (7) 

b) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

0id   , y x . In this case, the transition probability 

density is calculated by the formula: 

1 2

1 2

( ) ( ) ( ) ( )
,

( ) ( )

id d y
i i i i

id d x
i i

r y x G y x G y R y

G x R x
p

   
   (8) 

c) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

1
i

d   , 0y  . The transition probability density is 

1 2

1 2

( ) ( ) ( ) ( )
,

( ) ( )

id d y
i ii i

id d x
i i

g y x R y x G y R y

G x R x
p

   
   (9) 

d) 1 2 1 2id d x id d y   in conditions: 
k kd d   at k i , 

0
i

d   , 0y  . The transition probability density is 

found from formula: 

1 2

1 2

( ) ( ) ( ) ( )
.

( ) ( )

id d y
i ii i

id d x
i i

r y x G y x G y R y

G x R x
p

   


  (10) 

For the remaining states of the system, the transition 

probabilities are determined in a similar manner.  

4 Finding the characteristics of the 
system 

To determine the stationary reliability characteristics of 

the system, we find the stationary distribution of the 

EMC { : n 0}n  . 

Suppose that for a stationary distribution of EMC 

{ : n 0}n   exist densities 
1 2( )id d x . 

We introduce the following substitutions: 

1 2

1 2

( )
( ) , 1,

( )
i

i

id d x
id d x d

F x


     

1 2

1 2

( )
( ) , 1,

( ) ( )
i

i i

id d x
id d x d

R x G x


     

1 2

1 2

0

( )
( ) , 0.

( ) ( )

( )

i

i i

i i

id d x
id d x d

r t G x t dt

P




 


  







 

The system of integral equations for the stationary 

distribution of the EMC { : n 0}n   has the following 

form:  

1. If 1,i i i
d d d    , then  

1 2 1 2

0

1 2

0

( ) ( ) ( )

( ) ( ) ,

x

i

i

id d x id d y f x y dy

id d y f x y dy

 




   

   





     (11) 

2. If 1,i i i
d d d    , then  

1 2 1 2

0

1 2

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

x

i i

i i

id d x id d y r x y G x y dy

id d y r x y G x y dy

 




    

   





    (12) 

3. If 1, 0,i i i
d d d      then  

1 2 1 2

0

1 2

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

x

i i

i i

id d x id d y g x y R x y dy

id d y g x y R x y dy

 




    

   





  (13) 

4. If 1, 1, 0, 0i i i i i i
d d d d d d            , then  

1 2 1 2

0

1 2

0

0

1 2

0

1 2

0

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )
( )

( ) (

( )

x

i i

i i

i ix

i i

i i

id d x id d y g x y R x y dy

id d y g x y R x y dy

r t g x y t dt

id d y dy
P

r t g x y t

id d y dy

 




 









    

    

 

  


 

 









0

)

,
( )i i

dt

P  








  (14) 

5.  ( ) 1.
E

idx dx   (normalization condition).      (15) 

By substitution, one can verify that the solution of 

the system of equations for the stationary distribution of 

the EMC has the form: 

1 2( ) ( ), 1,i i i i
id d x с F x d          (16) 

1 2( ) ( ) ( ), 1,i ii i i i
id d x с p R x G x d       (17) 

0

1 2

( ) ( )

( ) , 0,
( )

i i i i i

i

i i

с p r t G x t dt

id d x d
P

 


 





  



 (18) 

0

1 2

( ) ( )

( ) , 0,
( )

i ii i i i

i i

i i

с p p r t G x t dt

id d x d d
P

 


 





   



(19) 
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where 
0

( ) ( ) ( )i i i i ip P G t r t dt 


    , 
i const  , 

which is equal to 
1

2
i

ip
 


, the constant с  is found 

from the normalization condition. 

We calculate the mean residence times in the states 

of the EMC. 

1. When 1,i i
d d   

1 2
[ ]id d x i i

x      , 
1 2

0

( ) ( )

( )

i i

id d x

i

F t F x t
E dt

F x


 
  . 

2. In case of 1, 1,i i
d d    

1 2
[ ]id d x i i i

x        , 

1 2

0

( ) ( ) ( )

( )

i i i

id d x

i

G t R t F x t
E dt

F x


 
  . 

3. If 1,i i
d d   then 

1 2
[ ] [ ]id d x i i i i

x x           , 

1 2

0

( ) ( ) ( ) ( )

( ) ( )

i i i i

id d x

i i

G t R t G x t R x t
Е dt

G x R x


  
  . 

4. When 0, 1,i i
d d    

1 2
[ ] [ ]id d x i i i

x        , 

1 2

0 0

( )
( ) ( )

( ) ( )

i

id d x i i

i ii

F x t
Е dt r z G t z dz

F x P


 

 
 

  . 

5. If 1, 1,i i
d d    then 

1 2
[ ] [ ]id d x i i i

x x         , 

1 2

0

( ) ( ) ( )

( ) ( )

i i i

id d x

i i

F t G x t R x t
Е dt

G x R x


  
  . 

6. In case of 0, 1,i i
d d    

1 2
[ ] [ ] [ ]id d x i i i i

x x            , 

1 2

0 0

( ) ( )
( ) ( ) .

( ) ( ) ( )

i i

id d x i i

i ii i

G x t R x t
Е dt r z G t z dz

G x R x P


 

  
 

   

7.  When 1, 0,i i
d d    

1 2
[ ]id d x i i i i

x    


       ,  

1 2

0 0

0

( ) ( ) ( ) ( )

( ) ( )

i i i i

id d x

i i

G t R t dt r z G x t z dz

Е

r z G x z dz



 



 





 



. 

8. If 1, 0,i i
d d    then 

1 2
[ ]id d x i i i

x   


      , 

1 2

0 0

0

( ) ( ) ( )

( ) ( )

i i i

id d x

i i

F t dt r z G x t z dz

Е

r z G x z dz



 



 





 



. 

9. In case of 0i i
d d  , 

1 2
[ ] [ ]id d x i i i i

x    


        , 

1 2

0 0 0

0

( ) ( ) ( ) ( )

,

( ) ( ) ( )

i i i i

id d x

i i i i

dt r y G t y dy r z G x t z dz

Е

P r z G x z dz



 

  



  



 

  



 

where   is the minimum sign. 

RV [ ]x   is the residual residence time of the 

semi-Markov process ( )t  in the state, provided that the 

residence time in this state exceeded the value x . 

Then 
( )

{[ ] }
( )

F x t
P x t

F x
  
    and  

( )
{[ ] }

( )

f x t
P x dt

F x
  
   . 

RV [ ]    is given by the following probabilities: 

0

( ) ( )

{[ ] }
( )

r z G t z dz

P t
P

 
 







  



, 

0

( ) ( )

{[ ] }
( )

r z g t z dz

P dt
P

 
 







  



. 

Define a random variable [ ]
i i

x 


     by  

0

0

( ) ( )

{ [ ] } ,

( ) ( )

r z G t x z dz

P x t

r z G x z dz

 








 

     






 

4

E3S Web of Conferences 58, 02024 (2018) https://doi.org/10.1051/e3sconf/20185802024
RSES 2018



0

0

( ) ( )

{ [ ] }

( ) ( )

r z g t x z dz

P x dt

r z G x z dz

 








 

     






. 

Let us turn to the determination of the stationary 

reliability characteristics of the system S : mean 

stationary operating time of the system to failure T
, 

mean stationary restoration time T
 and stationary 

availability factor 
aK  of the system.  

To find the characteristics, we use the following 

formulas presented in [18]: 
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where ( )de  is stationary distribution of EMC 

 ; 0n n  , ( , )P e E
 – transition probabilities of the 

EMC { ; 0}n n   to a subset of fault states, ( )m e  is 

mean residence time of the semi-Markov process in the 

state e E .  

Consider the parallel connection of system 

components. In this case 

{100 , },Е x x    

1 2{ : ( , ), (0,0), 0}.Е idx d d d d x        

We calculate the components of formulas (20) using 

solutions of the system of integral equations (16) - (19), 

the transition probabilities of the embedded Markov 

chain (2) – (10) and average residence times in the 

states obtained above.  

In the transformations, we will use the following 

formula, proved in [19]: 
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where ( )kF t  are distribution functions of independent 

nonnegative random variables 
k  with mathematical 

expectations 
kE . 

We write out expressions for the numerator and 

denominator for mean stationary operating time of the 

system to failure and mean stationary restoration time. 
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Let's write down formulas for finding of stationary 

characteristics of reliability: 
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(22) 

As an example of the use of formulas (21), (22), 

consider a system in which 
1K  operating time E1 = 8 h, 

2K  operating time E2 = 6 h, 
1K  recovery time 

E1 = 0.71 h, 
2K  recovery time E2 = 0.83 h, RV 1, 2, 
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1, 2 have 5th order Erlang distribution. Each 

component has a non-random time reserve 

( ( ) 1( )i iR t t h  ), which varies from 0 to 0.7 hours in 

0.1 increments. The corresponding values of mean 

stationary operating time of the system to failure 

1 2( , )Т h h
, mean stationary restoration time 

1 2( , )Т h h
 

and stationary availability factor 
1 2( , )aК h h  of the 

system for the specified distribution were calculated. The 

results are presented in Table 1, calculated on the 

condition that 
1 2 0.7h h  . 

Table 1. The influence of the time reserve on the system 

reliability characteristics. 

1h  
2h  

1 2( , )Т h h
 

1 2( , )Т h h
 

1 2( , )гК h h  

0 0 0.385 49.551 0.9923 

0 0.7 0.241 102.274 0.99765 

0.1 0.6 0.241 91.035 0.99736 

0.2 0.5 0.238 84.365 0.99719 

0.3 0.4 0.233 82.291 0.99717 

0.4 0.3 0.228 85.172 0.99733 

0.5 0.2 0.224 93.617 0.99762 

0.6 0.1 0.219 108.69 0.99799 

0.7 0 0.214 132.3 0.99839 

 

Analysis of the data in the table shows the significant 

effect of the time reserve on reliability characteristics.  

5 Conclusion  

In this paper we construct a semi-Markov model of a 

two-component system with a component-wise random 

instantly replenished time reserve. On a concrete 

example, influence of capacities of component-wise 

stores on stationary characteristics of reliability of 

system is shown. The effect of the time reserve on the 

reliability characteristics obtained is analysed. 

In the future, it is planned to build semi-Markov 

models of multicomponent systems with a component-

wise time reserve. 

The results of this work can be used to construct 

semi-Markov models of systems with different types and 

strategies for using the time reserve, engineering 

calculations and solving optimization problems 

associated with the use of a time reserve. 

The research was carried out within the state assignment of 

the Minobrnauki of Russia (No. 1.10513.2018/11.12), with 

financial support by RFBR (project No. 18-01-00392a). 
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