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Abstract. The paper describes the results of failure rate modeling using K-nearest neighbours method 
(KNN). This algorithm is one among other regression methods, called machine learning methods. 
The aim of the presented paper was to check the possibilities of application of such kind of modelling and 
the comparison between current results and investigations of failure rate prediction in another Polish city. 
Operational data from 12 years of exploitation, received from water utility, were used to predict dependent 
variable (failure rate). Data (249 and 294 for distribution pipes and house connections, respectively) from 
the time span 2001–2012 were used for creating the KNN models. On the basis of other data (one case for 
each year) the validation of optimal model, based on Euclidean distance metric with the number of nearest 
neighbours K = 2, was carried out. The realization of the modelling was performed in the software program 
Statistica 12.0. 

1 Introduction  
The assessment and analysis of failure frequency and 
reliability of water distribution systems and their 
elements have been very precisely described in the 
literature [1–3]. Nowadays, typical approach concerning 
the analysis of the number and kinds of occurring 
damages should be and is extended of the effects of 
water losses [4] which should be minimalized due to 
limited water resources in Poland. Moreover, more often 
the effects of failures are evaluated by consumers [5] and 
according to their opinion it is required to improve the 
quality of water delivering. 

1.1 Modeling 
 
The investigations related to the technical condition of 
buried infrastructure are extended and many 
mathematical modeling methods and special software are 
used to increase the efficiency of the management of 
water-pipe networks [6–8]. The prediction of failure rate 
could be carried out not only using typical statistical 
methods [9], but also using algorithms based on artificial 
intelligence [10–12]. Artificial intelligence known as 
neural networks based on unsupervised learning 
(Kohonen network) could be successfully used for risk 
analysis of water distribution system [13]. Till now K-
nearest neighbours (KNN) method was not widely used 
for reliability assessment of municipal systems and 
prediction of selected indicators. The main aim of this 
work was to indicate the possibilities of using KNN 
algorithm for failure analysis of water conduits. This 
method was successfully applied in many scientific 

fields, e.g. for failure analysis of mechanical facilities 
[14] and in broadly understood medicine [15]. Hence it 
seems to be reasonable to check the usability of KNN 
method in failure frequency analysis of water supply 
systems. 

1.2 K-nearest neighbours method 

K-nearest neighbours algorithm is relatively easy in 
implementation and in analysis in comparison to other 
regression methods. KNN could be used in classification 
[16] or regression [17] problems. Modeling of failure 
rate of water pipes is based on regression 
not classification algorithm. The main assumption of this 
algorithm is to classify similar data to the same classes. 
The prediction of dependent variable is based on the 
comparison if this variable belongs to the exemplary set 
or not [18]. The choice of the number of K-nearest 
neighbours has the great influence on the model quality. 
The lower number of K, the bigger prediction errors. On 
the other hand, too many K-nearest neighbours can lead 
to modeling results with so-called error of overfitting. 
Similarly, as in other regression methodologies, it is 
required to find the optimal solution. Optimal number of 
K is not known a priori. The application of so-called  
V-fold cross validation is recommended for finding 
the most beneficial result in terms of the model quality 
and the agreement between dependent variable and 
experimental values. In this type of cross validation, data 
are divided into V randomly selected disjoint parts. 
Using the V-1 parts of data as training examples 
the dependent variable is predicted and the prediction 
error is calculated on the basis the residual sum of 
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squares. The procedure is executed for all the V data 
segments. Then a model quality measure is determined 
on the basis of the averaged errors of the particular 
cycles. The optimal model parameters are selected 
during a quality analysis [18]. In regression problems, 
the average for K nearest neighbours is calculated 
according to the equation (1) [18]: 
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where yi is the output value for i learning example and  
y is the value of output variable for new example. The 
result is obtained on the base of the K nearest neighbours 
of new point. Following this assumption, it is needed to 
have some kind of measurement of the distance between 
examples. There are four types of distance metric: 
Euclidean (DE) – equation (2), quadratic Euclidean (DE2) 
– equation (3), Manhattan (DM) – equation (4) and 
Czebyszew (DC) – Equation (5) [18]:                      
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𝐷𝑀(𝑥𝑛, 𝑝) = |𝑥𝑛𝑖 − 𝑝𝑖|                                              (4)                                        	  

 

𝐷𝐶(𝑥𝑛 , 𝑝) = max
1≤𝑖≤𝑁

(|𝑥𝑛𝑖 − 𝑝𝑖|)                                        (5)                      	  

where D(xn, p) is the distance metric, xn is the new point 
and p is the learning example. The regression or 
classification precision depends mainly on the metric 
used to calculate distances [19]. 

2 Methodology of studies  

The calculations were carried out in the programme 
Statistica 12.0. Operating data, received from water 
utility, from the time span 2001–2012 were used for 
modeling separately (with different models) failure rates 
(λ, fail./(km·a)) of distribution pipes (DP) and house 
connections (HC). The whole data set (249 data for 
distribution pipes and 294 data for house connections) 
was randomly divided into two samples (learning – 75% 
and testing – 25%). Moreover, the model validation 
(verification) was carried out using data which did not 
belong to mentioned above two sets (one case for each 
year). KNN models were created on the basis of all four 
kinds of distance metrics (DE, DE2, DM and DC). 
Indicators (dependent variables) λr for distribution pipes 
and λp for house connections were predicted using 
independent variables. Independent variable (so-called 
predictors) vector contained (separately for distribution 

pipes and house connections): length-L, diameter-D and 
material-M (cast iron-Z, steel-S, galvanized steel-SO, 
PE, PVC) as well as the year of construction-YC of 
water pipes. The short description of investigated water-
pipe network was presented in the work [20]. In the 
current analysis 10-fold cross validation method was 
used. Such approach was also applied in other regression 
algorithms, e.g. in regression trees. The experience 
of the precursor of regression tree methodology, 
Breiman et al. [21] indicated that just V = 10 is the 
optimal value. The range of experimental dependent and 
independent variables in years 2001–2012 is displayed in 
Table 1 (learning and testing sample). The number of 
failures of house connections as well as of distribution 
pipes in the learning sample varied respectively between 
10 and 27 as well as 8 and 32 in the time span of 2001-
2012. 

Table 1. Dependent and independent variables – learning and 
testing. 

 L, km D, mm YC λ, 
fail./(km·a) 

DP 57.3–88.7 80–200  1961–2006  0.10–0.57 
HC 23.4–50.2 20–100  1961–2012 0.23–1.59 

3 Results and discussion 
In Fig. 1 and Fig. 2 the real (experimental) and predicted 
(by KNN model) failure rates of house connections and 
distribution pipes are displayed. The results of modeling 
concern the model validation step. Such approach seems 
to be reasonable, because the model quality assessment 
should be carried out using the data which were not 
included to the learning and testing step of modeling. For 
learning and testing step the prediction results were very 
good. Pearson correlation coefficient was established at 
the level of ca. 0.99. 
 

 

Fig. 1. Experimental and predicted failure rate of house 
connections. 

The results of prediction of indicator λ for house 
connections (Fig. 1) are almost ideal convergent with 
real values for all kinds of distance metric. Some small 
differences between experimental and predicted failure 
rates (for all distance metrics) are visible for years 2001 
and 2002. On the other hand, completely not understood 
is the result for 2005 when the model generated value of 
indicator λ equalled to zero for all distance metrics (DE, 
DE2, DM and DC). Operational data for year 2005 could 
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not be treated as outliers in comparison to other analysed 
years. It could be only assumption that modeling using 
K-nearest neighbours method contains the elements of 
so-called „black box” (similarly as other machine 
learning algorithms [22], which are also classified to 
regression methods). It means that deep inquire in the 
way of creating the optimal model and optimal results is 
rather impossible. 

More surprising results of validation of the KNN 
model are observed for prediction of failure rate of 
distribution pipes (Fig. 2). In this case the ideal 
convergence between predicted and experimental values 
for each analysed year and all kinds of distance metric 
was achieved (in the Fig. 2 series KNN means that all 
distance metrics gave the same results). 

 

 

Fig. 2. Experimental and predicted failure rate of distribution 
pipes. 

Completely different results were observed during 
the failure analysis also using KNN model on the basis 
of operational data from another Polish city [23]. It is 
obvious that each kind of modelling and forecasting is 
and even should be burden by the prognosis error which 
results from not only the data inaccuracy, but also from 
the difficulties in describing the relations between 
dependent (λ) and predictors. Hence it is required to be 
careful when such ideal results as above are observed. 
Ideal agreement between modeling results and real 
values should raise doubts due to many limitations of 
mathematical modeling connected with the character of 
changing dynamically the natural phenomena describing 
the technical condition and failure frequency of water 
distribution system. Maybe the differences in modeling 
results displayed in this work in comparison to solutions 
obtained earlier [23] are connected with the kinds of 
predictors as well as with the size of the independent 
variable vector. The analyses of the results in both 
investigations indicate that the kind and number of 
independent variables have the great influence on the 
modeling quality. This aspect is maybe even more 
important than the number of neighbours K or the kind 
of distance metric. Moreover, there is one more 
difference in the approach presented in this work in 
comparison to previous modeling attempts by means of 
KNN [23]. The kind of the created model is significant 
issue. In this work two separate models for failure rate 
prediction of distribution pipes and house connections 
were built. In contrast, in another author investigations 
[23] one model was analysed. This one model had three 
dependent variables: indicators not only λp, λr 
(for distribution pipes and house connections) but also 

indicator λm (water mains). Despite the fact that in 
currently analysed case different independent variables, 
which in better way describe the water conduits, were 
used, created models seem to be simpler than model with 
three output variables. This fact is obviously connected 
with the modeling quality. More complicated models 
(with more complicated structure) could be burden by 
higher prediction errors than models with different 
predictors but with one dependent variable in the output. 

The changes of cross validation errors values in the 
contrast with the number of nearest neighbours are 
displayed in the Fig. 3. The optimal number of K is also 
indicated. 
 
a) 

 

b) 

 

Fig. 3. Changes of cross validation error vs. number of K,  
a) distribution pipes, b) house connections. 

Concerning distribution pipes and house connections, 
the optimal number of nearest neighbours is the same 
and equals K = 2. The maximum number of nearest 
neighbours (5), determined during the model creation, 
depends on the number of independent variables and on 
the number of learning data. The analysis of the figure  
3 indicates that the lowest value of the cross validation 
terror (0.00555 – house connections and 0.00055 – 
distribution pipes) was observed in the models described 
by Euclidean (DE) distance metric. Moreover, 
when the minimal values were achieved, the error value 
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was increasing with the increase of the number of K. 
Despite the fact that the prediction results (Fig. 1 and 2) 
do not differ in relation to distance metric, it seems that 
Euclidean distance metric is the optimal 
one for describing the failure rates of house connection 
as well as for distribution pipes. Application of other 
distance metric had the great influence on the higher 
number of K, what meant that the complexity of the 
model was bigger. The architecture (structure) of the 
model should be as simple as possible. In addition in 
many other modeling, by means of KNN method, 
problems just Euclidean metric was proposed as the 
optimal one [19]. This distance metric describes 
relatively good the relations between dependent 
variables and predictors, especially when this 
dependence is not known a priori [19]. 

4 Conclusions 
The main aim of this work was to verify if application of 
K-nearest neighbours method is possible for prediction 
of failure rates of water pipes. The modeling, on the 
basis of operational data from the time span 2001–2012 
received from one water utility, of the indicator  
λ (separately for distribution pipes and house 
connections) was performed using following 
independent variables: material, diameter, length and 
year of construction of water conduits. Models were 
created based on all kinds of distance metric (Euclidean, 
quadratic Euclidean Manhattan and Czebyszew). The 
maximum number of nearest neighbours was established 
at the level of K = 5. The increase of the number of  
K leads to increase of 10-fold cross validation error. The 
validation results of optimal models based on Euclidean 
distance metric with K = 2 are satisfactory. The ideal 
convergence between predicted and experimental values 
of failure rate was obtained. On the other hand, one 
should be very careful and sceptical when such great 
correlation is observed, because this fact could denote 
that model was overtraining.  In such case the predicted 
values are ideally fit to learning sample what could mean 
that the generalization capabilities are lost. On the basis 
of the results shown in this paper one can conclude that 
KNN method seems to be less appropriable for failure 
rate prediction of water-pipe network than other 
regression algorithms (so-called learning machine 
methods), e.g. artificial neural networks, regression tress 
and support vector machine. The modeling does not 
mean the ideal agreement between the experimental and 
predicted values of variables, but rather means the 
recognition of the relationships between predictors and 
dependent variable. Many studies conducted until now in 
the whole world show that KNN method has not been 
applied for analysis and the assessment of failure 
frequency of water conduits. That is the reason to use 
this algorithm in the failure analysis of water-pipe 
network in Poland. It should be indicated that the choice 
of number and kinds of independent variables as well as 
the whole modeling process were carried out with the 
knowledge about KNN in relation to other engineering 
issues. In such case it is necessary to deepen the 

modeling methodology in relations exactly 
to investigations connected directly with reliability 
analysis of municipal systems. Maybe, this hypothesis 
should be checked using operational data from other 
water distribution systems, KNN method, in distinction 
to other regression algorithms, does not require too large 
(number of cases and variables) vector of predictors. 
Generalization ability maybe has been just lost due to 
using ca. 200 learning cases. If such hypothesis is 
confirmed during the modeling of failure rate of water 
pipes in another city, it will mean that KNN algorithm 
is privileged to other regression methods on account of 
difficulties of obtaining huge operating data. 

 
The work was realized within the allocation No. 0401/0069/16 
awarded for Faculty of Environmental Engineering Wroclaw 
University of  Science and Technology by Ministry of Science 
and Higher Education in years 2016–2017.                               
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