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Abstract. Algorithms for ionospheric data processing are presented in the 

paper. The algorithms are implemented in the real-time mode of 

ionospheric parameter analysis. They are a component of "Aurora" 

software system for geophysical data analysis. The algorithms allow us to 

estimate the state of the ionosphere in the region of Kamchatka Peninsula 

and to detect ionospheric anomalies. Assessment of the algorithms 

efficiency has shown that it is possible to use them to detect ionospheric 

anomalies that may occur on the eve of magnetic storms. The research is 

supported by the Russian Science Foundation Grant (Project No. 14-11-

00194). 

1 Introduction 

The paper is aimed at constructing the automatic algorithms for processing and analysis 

of ionospheric parameter time series and software solutions on their basis. We present the 

algorithms which are based on the methods for modelling and analysis of natural time 

series of complicated structure [1-4]. Ionospheric parameters have complicated structure, 

include diurnal and seasonal components and depend on solar activity, geographic 

coordinates and geomagnetic conditions [5-7]. Ionospheric disturbances occur during 

increased solar (flares, coronal ejections) and geomagnetic activities. They manifest in the 

recorded parameters as anomalous features of different structure and duration. Powerful 

and long disturbances in the ionosphere are the cause of operational disorder in ground and 

space technical means [5, 6], thus, the timely detection of them is an important task [5-8]. 

Disturbances are characterized by significant changes of electron concentration in the 

ionosphere, they may have positive and negative phases, different intensity and duration [5, 

7]. 

It is difficult to apply the traditional analysis methods (regression, smoothing, spectral, 

ARIMA [9] and so on) to detect and to estimate anomalous changes in the ionospheric 

parameters owing to the nonstationary character of ionospheric dynamics changes. In this 

paper we apply a generalized multicomponent model (GMCM) [2, 10], which allows us to 

model ionospheric parameter time series. We can describe ionospheric parameter regular 

variations and anomalous changes by the GMCM. The basis of GMCM is a complex 

approach using the wavelet transform methods and ARIMA model. For the first time, this 

approach was proposed in the paper [2]. Numerical realization of the model [10] allowed 

representing it in the form of software solutions for ionospheric parameter analysis in real-
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time mode. To identify and to estimate the detected anomalies, the authors of the paper 

suggested applying continuous wavelet transform (CWT) [2, 11, 12]. Application of CWT 

and adaptive threshold functions for ionospheric parameter analysis is based on the papers 

[2, 12, 13]. The proposed approach was realized in the form of numerical algorithms and 

represented in software solutions. Another approach for ionospheric parameter modeling is 

based on the combination of wavelet transform and neural networks. The results of its 

application show the possibility of detection of ionospheric disturbances [14-16]. The 

neural networks perform their operation with ionospheric data after their preliminary 

wavelet processing. In this case, the time series noise component is suppressed that allows 

increasing the efficiency of neural network operation during anomaly detection [14, 15]. 

The approach is implemented in software solutions which process data in real-time mode. 

The described approaches are used for the analysis of ionospheric F2 layer (foF2) critical 

frequency data (Paratunka station). 

2 Ionospheric time series analysis methods realized in real-time 
mode  

2.1 Modeling of ionospheric parameters by GMCM  
Ionospheric parameter time series has a regula and an anomalous components and can 

be represented in the form of a generalized multicomponent model (GMCM) [10]: 
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It was shown in the paper [10] that the recurrent component can be represented in the 

form  
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component, regreg

1
j ,kj ,k

b    is the scaling function, regreg j ,kj ,k
b , 2,T


     is the wavelet 

basis of  -th component.  

 

2.2 Identification and detailed analysis of anomalies  

As long as the components      
 ( ) of irregular component  ( ) of model (1) have local 

structure, the most effective way of their description is the application of nonlinear adaptive 

approximating scheme and the following relation is fair  [12]:  
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component to be uncorrelated and additive).  

Identification of the component 
MU (t)  can be based on the application of threshold 

functions [11] 
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Taking into account the significant nonstationarity of the modeled time series, adaptive 

thresholds 
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nd  is the 

average and the median, respectively. Taking into account the ionospheric data diurnal 

variation, they are calculated within the moving time window of the length  . 

As long as the wavelet coefficient 
,nd  amplitude characterizes the anomalous feature 

anmplitude on scale   (see[11]), it is logical to assess it as a measure of anomaly intensity 

of scale  . We determine the anomaly intensity at a time instant t n  as  

,n nI d 



.        (6) 

2.3 Modeling of ionospheric parameters by neural network  
Following the papers [14, 15], ionospheric parameter time variation modeling is carried 

out on the basis of the operations below.  
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Based on multiresolution wavelet decompositions,  we represent the time series 
0 ( )f t in 

the form of linear combination of different-scale components: smoothed one 2 mf t  
 of 

scale m and detailing ones 2 jg t  
of scales 1,j m   [11]:  
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, ,,m k m kc f   ,  is the smoothing scaling function. The 

suffix 0 corresponds to the data initial resolution.  

 

Applying the inverse wavelet transform [11], the initial resolution 0j   is restored for 

the component 
3
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where  0 , 0 0 ,,apk kc f  , 0, ( ) ( )k t t k    . Based on the preliminary trained 

neural networks (NN), the component  0

apf t  is modeled.  

NN were trained on foF2 data for the period 1968-2010 (Paratunka st.). To improve the 

quality of approximation for training, we used the periods without strong magnetic storms 

and high seismic activity in Kamchatka.   

The constructed NN predict the data [14, 15]: 
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where kq are the weight coefficients of neuron q  of network input layer, are the weight 

coefficients of neuron i  of network hidden layer, ij  are the weight coefficients of neuron 

j  of output layer,  1 2

1
( ) ,

1 exp( )
z z

z
   

 
 3 z a z b    .  

A trained NN makes it possible to reconstruct the characteristic foF2 time variation and 

the procedure of anomalous changes detection can be based on the analysis of NN errors 

when the characteristic variation is disturbed  [14, 15]. 

3 Results of application of numerical algorithms in software 
tools  

The approaches described in Section 2 were represented in the form of numerical 

algorithms [10, 14, 15] and implemented in the form of software block for data processing 

in real-time mode. The block is included into the structure of «Auroroa» software system 

for data analysis (http://aurorasa.ikir.ru:8580). The results of ionospheric data processing by 

software solutions for Paratunka station (IKIR FEB RAS) are illustrated in Fig. 1-3. We 
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processed the data which were obtained during the magnetic storm on November 24, 2016. 

It began at 00:00 UT. Fig. 1 shows the results for the period which includes the magnetic 

storm. Based on the approach of Section 2.2, we detected positive and negative anomalies 

(red and blue, respectively) in the ionosphere (Fig. 1 b,c), which characterize electron 

concentration change. Analysis of Fig. 1 b,c shows a long positive anomaly (electron 

concentration increase) before the magnetic storm. A negative anomaly was detected in the 

ionosphere during the magnetic storm recovery phase. Modeling of foF2 based on the 

approaches from Sections 2.1 and 2.3 (Fig. 1 d, e) shows model error increase during the 

negative anomaly that indicates the disturbance of the ionospheric process characteristic 

variation.  

Fig. 2, 3 illustrate the method applicability for real-time detection of anomalies in the 

ionosphere. Fig. 2 shows the period of data processing till 14:00 UT on 2016.11.23. It is 

clear from the graphs (Fig. 2 b, c), a positive anomaly begins to form before the storm. In 

Fig. 3, the processing is carried out till 17:00 UT on 2016.11.23. A positive anomaly is 

formed before the magnetic storm and its intensity begins to grow (Fig. 3 b, c). The 

processing results show the possibility of timely detection of ionospheric anomalies and 

assessment of their occurrence dynamics.   

 

 
Fig. 1. Results of foF2 data processing for the period 2016.11.19-2016.11.25. 
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Fig. 2. Results of foF2 data processing for the period 2016.11.21 - 2016.11.23. The 

foF2 data were processes till 14:00 UT on 2016.11.23. 

 
Fig.3. Results of foF2 data processing for the period 2016.11.21 - 2016.11.23. The foF2 

data were processed till 17:00 UT on 2016.11.23. 

3 Conclusions 

The paper describes the approaches to ionospheric parameter analysis and anomaly 

detection. Numerical algorithms were developed for these approaches. They were 

implemented in software solution block for ionospheric parameter analysis in real-time 

mode. The software block is a part of «Aurora» geophysical data processing system which 

is located at the Internet address http://aurorasa.ikir.ru:8580. Software solutions allow us to 

detect ionospheric anomalies and to assess the dynamics of their change in real-time mode. 

The investigation was supported by the Russian Scientific Fund Grant (Project No. 14-11-
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00194). The work was carried out by the means of the Common Use Center "North-Eastern 

Heliogeophysical Center"CKP_558279  
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