
The Lorenz system and its generalizations as dynamo
models with memory

Gleb Vodinchar1,3,∗ and Evgeny Kazakov1,2

1Institute of Cosmophysical Researche and Radio Wave Propagation FEB RAS,
684034 Paratunka, Kamchatka region, Russia

2Kamchatka State Technical University,
683003 Petropavlovsk-Kamchatsky, Russia

3Vitus Bering Kamchatka State University,
683032 Petropavlovsk-Kamchatsky, Russia

Abstract. The one of the known applications of the classical Lorenz system is
an axisymmetric αω-dynamo with a dynamical quenching of the α-effect by the
helicity. In this paper we consider generalizations of the Lorentz system, which
are the models of α2- and α2ω-dynamo. The cases of finite and infinite memory
in the quenching functional are considered. The conditions for the existence of
stationary dynamo regimes and regimes of regular and chaotic inversions are
analytically and numerically studded.

1 Introduction

It is well known that in real cosmic dynamo-systems an reversal phenomenon is observed, and
the series of reversals contain both regular and chaotic components [1, 2]. The modern models
of magneto-convection in the cores of planets and convective zones of stars successfully
reproduce certain features of reversals, but direct simulation in time scales comparable to the
time of the existence of celestial bodies is impossible. In this case, the mean-field models
and the concept of the alpha-effect become indispensable. These models make it possible
to obtain long-term realizations of the field dynamics, but the solutions depend very much
on the predetermined spatial structure of the alpha-effect in both scalar and anisotropic cases
[3–5].

Therefore, interesting extremely simplified dynamo models are interesting in which the
spatial structure of the fields is not predetermined and chaotic inversions arise. We have in
mind are completely deterministic models, without parameter fluctuations or noises. Such
models are dynamical systems of small dimension and describe only the basic phenomenol-
ogy of dynamo – mutual generation of two field components by alpha effect and (possibly)
differential rotation, as well as nonlinear quenching of generation. The such systems pri-
marily include the Rikitake system [6] in which chaotic reversal arise, but this system is
laboratory, its derivation from the MHD equations is very problematic. Another example of
a classical system with stationary regimes and regimes of regular and chaotic reversals is the
classical Lorentz system [7]. The Lorentz system as a dynamo model was proposed by [8]
for explanation of the chaotic component of the solar cycle.
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In the present paper we consider some generalizations of the Lorenz system, as the sim-
plest models of the mean-field dynamo, in which the spatial structure of the fields is not taken
into account.

2 Model equations

Generation of an axisymmetric magnetic mean field B can be described by the equation

∂B
∂t

= ∇ × (v × B) + ∇ × (αB) + η∇2B, (1)

where v – predetermined toroidal velocity field (usually this differential rotation), α-effect is
responsible for field generation by turbulence, η – turbulent magnetic diffusivity. We assume
that the feedback is manifested in a predetermined dependence α = α0(r) − F(HB), where α0
– value of alpha-effect in the absence of the magnetic field, and F(HB) – is a convolution in-
tegral from the present and previous values of the magnetic helicity HB. This predetermined
expression F(HB) are specify the model of feedback – dynamical quenching of α-effect by
helicity. Note that we assume convolution in F(HB) only by time, and not by spatial coordi-
nates. This means that in our model there is memory, but not spatial non-locality.

We believe that the spatial structure of the field is simplest and can be described by a one
poloidal and a one toroidal modes. Thus we consider only the largest-scale structure of the
mean field. This approximation has the form

B = BT (t)bT (r) + BP(t)bP(r), (2)

where the energies of both magnetic modes are equal to one. In this case, the helicity of the
field

HB =

∫
B (∇ × B) dr = BT (t)BP(t)

∫ [
bT

(
∇ × bP

)
+ bP

(
∇ × bT

)]
dr ∼ BT (t)BP(t)

Then, the evolution of field be determined by the behavior of scalar amplitudes BT (t) and
BP(t) for which the following equations are valid:

dBT

dt
= (ω + ξ (α0 − F)) BP − σBT ,

dBP

dt
= (α0 − F)BT − BP,

F =

∫ t

0
J(t − τ)BT (τ)BP(τ) dτ,

(3)

where σ – ratio of diffusion times of bT and bP, ξ – ratio of efficiencies of the α-effect for
the poloidal and toroidal components, and J(t) – is a sufficiently arbitrary kernel with the
property that J(+∞) = 0.

These dimensionless equations can be obtained from (1, 2) using the Galerkin method.
The timescale in (3) – is the bP(r) diffusion time. It is known, that if we take the one toroidal
and one poloidal modes of free decay of a magnetic field with the same spatial scales, then
the poloidal mode has an eigenvalue smaller. Therefore, in the future, we believe that σ > 1.

The integro-differential system (3) is a simplest model of the α2ω-dynamo with dynami-
cal quenching. In particular, for ξ = 0 it describes a αω-dynamo, and for ω = 0 it describes a
α2-dynamo.
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We introduce the parameters s = (ω + ξα0)/σ > 0 and D = sα0 > 0, and replace the
variables:

x(t) = BT (t), y(t) = sBP(t), z(t) = sF(t). (4)

Then system (3) can be written in the form

dx
dt

=

(
σ −

ξ

s2 z
)
y − σx,

dy
dt

= (D − z)x − y,

z(t) =

∫ t

0
J(t − τ)x(τ)y(τ) dτ.

(5)

We note that s2σ ≥ ξD, since ω ≥ 0. Therefore s2σ = ξD corresponds to the ω = 0, that is
α2-dynamo.

Thus, the system (5) describes:

• α2ω-dynamo, if ξ , 0 and s2σ > ξD;

• α2-dynamo, if ξ , 0 and s2σ = ξD;

• αω-dynamo, if ξ = 0.

It is clear that this system has a single stationary point (0, 0, 0). This point will be stable
for D < 1, and unstable for D > 1. Therefore, D is a dynamo-number.

Formally, the integral term in (5) is a sign of memory (hereditarity) in this model. At the
same time, it can be excluded for certain types of nuclei with exponential asymptotics ∼ e−bt,
b > 0, that’s the true hereditarity in these cases is not. The reason is that the kernels with
exponential asymptotics are integrable on the entire numerical axis and we can talk about the

finite duration of the memory T ∼
∫ +∞

0
J(t) dt ∼ 1/b. Then the memory effects will not be

manifested on time scales greater than T .
If the kernel is not integrable on the time axis, the memory in the model has an unlimited

duration, so we can talk about true hereditarity. For example, this will be for a power kernel
J(t) = (1 + t)−α, 0 < α ≤ 1. In this case, the integral term in the system (5) can not be
eliminated. Also, kernels of the form J(t) = tne−bt, n = 1, 2, 3, . . . are of some interest. In
this case, we can speak of a delay in quenching, since the quenching functional depends little
on the values of the field components at instants close to the present time.

Let us now consider how the integral term is eliminated from (5) for some types of kernels
with exponential asymptotics. Assume that the kernel J(t) be a solution of the following
Cauchy problem for a linear homogeneous equation n-th order with constant coefficients:

an
dnJ(t)

dtn + an−1
dn−1J(t)

dtn−1 + · · · + a0J(t) = 0,

J(0) = q0, J(1)(0) = q1, . . . J(n−1)(0) = qn−1.

(6)

Differentiate third equation of system (5) k times in a row, we obtain:

dkz
dtk =

∫ t

0
J(k)(t − τ)x(τ)y(τ) dτ +

k−1∑
l=0

J(l)(0)
dk−1−l

dtk−1−l x(t)y(t), (7)
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We multiply (7) by ak and sum up by k from 0 to n, taking into account (6):

n∑
k=0

ak
dkz
dtk =

n∑
k=0

ak

k−1∑
l=0

ql
dk−1−l

dtk−1−l x(t)y(t),

z(k)(0) =

k−1∑
l=0

qlx(k−1−l)(0)y(k−1−l)(0), k = 0, 1, . . . , n − 1.

(8)

So, in this case, the third equation of the system (5) is equivalent to the equations (8).
The integro-differential system reduces to a differential system of order n + 2 with initial
conditions on n phase variables.

3 Exponential kernel

Now consider the important case of an exponential kernel J(t) = e−bt, b > 0. Then the
equation (6, 8) takes the form:

dJ(t)
dt

+ bJ(t) = 0, J(0) = 1,

and
dz(t)

dt
= −bz(t) + x(t)y(t), z(0) = 0,

respectively.
Thus, if the kernel is exponential, then system the (5) can be written in the form

dx
dt

=

(
σ −

ξ

s2 z
)
y − σx,

dy
dt

= (D − z)x − y,

dz
dt

= q(x(t), y(t)) − bz,

z(0) = 0.

(9)

Figure 1. Areas of different regimes
in the (b,D)-plane. I – regime with
reversals, II and III – stationary
regime of dynamo. D0(σ, s) > 1 and
b0 = σ − 1 > 0, if σ > 1. Red line is
half-hyperbola, and the dotted line is
its asymptote.
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In particular, for ξ = 0 and q(x, y) = xy, the system (9) takes the form a classical Lorenz
system [7]. Therefore, we can speak of a system (5), which describes various dynamo mech-
anisms, as about broad generalization of the Lorentz system.

From this point of view, the Lorenz system itself is a simplest αω-dynamo model, when
the helicity with an exponential kernel is quenched the alpha effect.

3.1 Lorenz system as αω-dynamo model

We consider the system (9) for ξ = 0 and without the condition z(0) = 0. It is well known
that it has two symmetric stationary points in addition to the zero stationary point:(

±
√

b(D − 1),±
√

b(D − 1),D − 1
)
. (10)

At these points the third coordinates are nonzero, if D , 1. Therefore, they are the stationary
points of the dynamical system (without condition z(0) = 0), but they are “punctured” in
the phase space of the dynamo model (9). However, the transitions of the phase trajectories
between these “punctured” points signify an reversal of the field. If these points are asymp-
totically stable, then the approximation of the phase trajectory to one of them corresponds
to the stationary regime of the dynamo. It is also clear that the symmetry x(t) ↔ y(t) of the
system (9) provides the identical structure of the phase space in the vicinity of these points.

It is easy to get areas of dynamic regimes shown in Fig. 1. Of course, the dynamics of
this system are well known. However, in numerous studies is usually varied the parameter,
which we have designated as D. The σ and b is fixed: σ = 10 and b = 8/3. Such values are
due to the problem of convection in a plane layer, from which the Lorenz system arose [7].
In a dynamo problem σ > 1, but the characteristic times of dissipation poloidal and toroidal
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Figure 2. The solutions for the αω-dynamo at b = 0.1 and different D.
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Figure 3. The solutions for the αω-dynamo at b = 0.1 and different D.

components do not differ by an order. Thus, for the classical two-mode Parker dynamo [9],
the ratio of the eigenvalues of the modes gives σ = 3.37. The parameter b in our problem
determines the effective memory duration and should be varied.

From Fig. 1 that for the reversal regime to appear it is necessary to have sufficiently
large values of the dynamo number and a sufficiently long memory. Easy to establish that
D0 = σ(σ + 3)/(σ + 1). This expression reaches the least value equal to 9 for σ = 3, which
is characteristic of the Parker dynamo. The asymptote b0 = σ − 1, then for reversals it is
necessary T & 0.5.

The numerical simulation of the Lorenz system for σ = 3.37, and b = 0.5, 1.0, 5.0 gave
phase trajectories, which qualitatively not differing from the well-known ones in the classical
case σ = 10, and b = 8/3. However, for b = 0.1, we obtained the regimes shown in Fig. 2. In
this case the points (11) lose stability when D = 9.6. It can be seen that the solutions have the
form of dynamo-bursts, and with an increase in D the regular bursts are replaced by chaotic.

3.2 α2- and α2ω-dynamo

Suppose now that in the system (9) ξ , 0 and s2σ = ξD. In this case system describe α2-
dynamo. When a dynamo is working (i.e. D > 1) and without the condition z(0) = 0, system
has a one pair of nonzero stationary points:(

±

√
b(
√

D − 1),±
√

b(D −
√

D),D −
√

D
)
. (11)

As in the previous case, these points themselves are “punctured” from the phase space of the
dynamo model, but their stability corresponds to the regime of the stationary dynamo.
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Figure 4. The solutions for the α2ω-dynamo with quenching by helicity, s = 1, and b = 0.1.

An analytic study of the stability conditions of these points is very difficult, so it was
carried out with the help of numerous computational experiments at various parameters. It
turned out that these points are always stable. Thus, reversals in our model α2-dynamos do
not arise.

It is known that a model of α2-dynamo for scalar α-effect have difficulties to explain the
reversals. However, there are series of works in which it is shown that for a some special
radial inhomogeneity of the α-effect, reversals in α2-dynamo can arise [3–5]. Therefore, we
can say that in order to reproduce the reversal phenomenon in α2-dynamo, it is necessary to
take into account spatial inhomogeneities. In our simplest model, the spatial structure of the
fields is not used in any way. This is the reason for the absence of reversal regimes.

The system (9) describes the mechanism α2ω-dynamo, if ξ , 0 and 2σ > ξD. As in the
previous case, with such values of the parameters and D > 1 the system there are a pair of
nonzero symmetric stationary points. It is self-evident that we did not use conditions z(0) = 0.
The expressions for the coordinates of these points can be obtained analytically in an explicit
form, but they very cumbersomeness and we are not write this formulas. The stability of
points can also be checked only by numerical methods.

The numerical simulation showed that in such a model the stationary regimes and the
regimes of regular and chaotic reversals can arise under. If b is small, dynamo-bursts are
arise (Fig. 3 for b = 0.1). The examples of solutions for this model for b = 0.5 are shown in
Fig. 4. Here, bursts are no longer observed. It should be noted an interesting feature of the
solutions for this model. If we rewrite inequality 2σ > ξD in the form D < σs2/ξ, then the
dynamo-number is bounded above for fixed σ, s, and ξ. It turns out that large values D can
stabilize the dynamo. This situation is typical. With the growth of the dynamo-number, the
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Figure 5. The solutions for the α2ω-dynamo with quenching by helicity, s = 1, and b = 0.5.

stationary regime is first observed, then regular and/or chaotic reversals arise, then again the
stationary regime.

4 Power kernel

We mentioned above that a sufficiently long memory is necessary for the appearance of an
reversals in the case of exponential kernels. Then it can be assumed that the reversals always
will be, for nonintegrable kernels with a power asymptotic and for large values of the dynamo
number.

However, the simulation results suggest the opposite effect. An infinitely long memory
leads the dynamo to a stationary regime. Some results are shown in fig. 4. It can be seen that
the dynamo stabilized. This happens even when the chaotic reversals regime first existed.

Therefore, we can conclude that for the reversals regime in the models described, a suffi-
ciently long but finite memory is necessary.

5 Conclusion

• In the proposed models, the main dynamo regimes are realized – stationary, reversals
(chaotic and regular), dynamo-bursts.

• In the «pure» α2-dynamo reproduction of reversals is impossible. Most likely the reason is
that in our models there is no heterogeneity in the spatial distribution.

• For the occurrence of reversals requires a long, but finite memory.
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