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Abstract. The paper is devoted to the development and comparison of 

different numerical methods which increase the adaptive property and 

improve the accuracy of matching pursuit algorithm in connection to 

geoacoustic and electromagnetic signals. At each step of adaptive matching 

pursuit, a function is chosen which has the highest correlation with an 

initial signal. Then parameters of a chosen function are refined. The 

refinement is performed by the help of different grid methods and methods 

based on gradient direction search. The paper considers the peculiarities of 

application of sparse approximation methods to geophysical signals of 

pulse nature and compares different variants of modification of adaptive 

matching pursuit algorithm.  

1 Introduction  

At present, the task of complex analysis of different nature signals with the aim to 

investigate the processes of geophysical field interaction is topical in geophysics. A 

significant part of signals under analysis is of pulse nature and has nonstationary character 

that considerably complicates their analysis by well-studied classical methods. Complexity 

of tasks entails the appearance of a larger number of highly specialized analysis methods 

adapted for concrete features of signals and extending researcher's tools.  

This paper is devoted to a new approach to analyze geoacoustic and electromagnetic 

emission signals. We suggest applying the instrument of sparse approximation to analyze 

signal time-frequency inner structure which depends directly on generation process 

characteristics. Sparse approximation was chosen because the signals under investigation 

are well representable as a sum of a small number of elementary (single-frequency) pulses. 

There is a large number of algorithms which allow us to estimate sparse approximation, 

however, the matching pursuit [1] algorithm showed the best result in pulse signal 

processing and became the basis of the suggested approach. The matching pursuit algorithm 

was updated and adapted for the signals under investigation. The main difference of the 

adapted matching pursuit from the original algorithm is the introduction of the refinement 
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procedure of chosen function parameters. We should note that refinement can be done by 

different ways. The paper investigates and compares some of them.  

Initially, the adaptive matching pursuit was developed for geoacoustic emission pulse 

signals. The system based on it for signal analysis was implemented at the Laboratory of 

Acoustic Research IKIR FEB RAS at the stage of post processing of geoacoustic emission 

disturbance data. Application of sparse approximation together with methods of time-

frequency analysis and mathematical statistics worked well (the investigation is described 

in detail in [2-5]), thus, we decided to test the suggested approach on electromagnetic 

emission pulse signals.  

 

Fig. 1. Block-scheme of MP (a) and AMP (b) algorithms. 

 
 

/, 02012 (2018) e3sconf/201E3S Web of Conferences 62 8620https://doi.org/10.1051

Solar-Terrestrial Relations and Physics of Earthquake Precursors

2012

2



2 Adaptive matching pursuit  

Sparse approximation search in a dictionary from N functions refers to NP-stiff 

problems and as for the moment there is no algorithm capable of solving it during 

polynomial time. Exact solution algorithm requires complete enumeration of all possible 

combinations of functions, i.e. has factorial complexity O(N!).  

One of the algorithms of approximate solution is the Matching Pursuit (MP). This 

algorithm refers to greedy algorithm class. Its essence is the determination of a function, 

having the highest correlation with a signal, at each algorithm iteration. A block-scheme of 

the algorithm is illustrated in Fig. 1a. Matching pursuit has cubic computational complexity 

O(N3) in case, when a scalar product matrix is calculated by a definition, and logarithmic-

squared one O(N2 log N), when the calculation is performed by fast Fourier transform. 

The main disadvantages of matching pursuit algorithm are, firstly, the necessity of 

application of dictionaries (function sets into which a signal is decomposed) of large 

volumes to provide sufficient accuracy of decompositions and, secondly, “rough” sampling 

in the parameter space (Fig. 2). 

 

Fig. 2. Examples of “rough” sampling in a dictionary parameter space. Both pulses have the 

frequencies of about 9 kHz, however, in view of absence of a function with such a frequency in the 

dictionary, they are decomposed into functions with the frequency of 10 kHz.  

Assume that a dictionary is composed of analytically defined functions, each of which 

depends uniquely on a parameter set p (for example, the basic frequency) g(t, p). Function 

parameters having the highest scalar product with a signal are defined on each iteration of 

matching pursuit algorithm. Consequently, for a fixed initial signal, the matching pursuit 

iteration can conditionally be described as a search problem of function maximum of many 

variables  

 ( , ) ( , ), ( ) maxiF g t R t = − →
p

p p  (1) 

The main idea of the proposed improvements is to add a refinement procedure to the 

parameters p of a function having the highest correlation with a signal. The developed 

algorithm was called Adaptive Matching Pursuit (AMP). The block-scheme of the 

algorithm is illustrated in Fig. 1b. 
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The refinement can be carried out by different grid methods and methods based on 

gradient direction search. Further we consider the following in the paper:  

1) gradient descend method; 

2) different variants of grid search.  

3 Geophysical signal analysis  

As it was shown in the papers [6-7], analysis of geoacoustic emission pulse signals, 

applying a combined dictionary, compound of shifted and modulated Gaussian and Berlage 

functions, gives good results.  

Gaussian functions are universal as they have the least possible square of a frequency-

time window. The Gaussian function (Fig. 3a) is described by the following analytical 

expression:  

 ( )( )2end( ) exp sin(2 )g t A B t t ft=  −    , (2) 

where A is the amplitude which is chosen so that ||g(t)||2 = 1; tend is the atom length; f is the 

filling harmonics frequency; B(tend) is the B parameter limit value calculated by the formula 

 end 2

end

4 ln 0.05
( )B t

t


= − ; (3) 

Δ is the coefficient of B parameter variation relatively the limit value.  

Berlage functions have a form similar to single geoacoustic pulses. The Berlage 

function (Fig. 3b) can be described by the formula  

 

max( ) max

max end

( )
( ) exp cos 2 ,

2

n p n p
g t A t t ft

p t


    

=   −   +   
     (4) 

where A is the amplitude which is chosen so that ||g(t)||2 = 1; tend is the atom length; pmax is 

the maximum position relatively the atom length, pmax ∈ [0.01, 0.4]; f is the frequency from 

200 to 20000 Hz; n(pmax) is the parameter n limit value calculated by the formula 

 
max

max max

ln 0.05
( )

1 1
ln 1

;n p

p p

=

− +  (5) 

Δ is the coefficient of n parameter variation relatively the limit value.  

 

Fig. 3. Graphs of Gaussian (a) and Berlage (b) functions. 
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Before applying the adaptive matching pursuit, we consider the type of a function 

F(τ, p) for typical single pulses of geoacoustic emission. The graphs shown in Fig. 4, 

represent two-dimensional projections of the function F(τ, p) for the pulse from Fig. 2a on 

different coordinate axes: (τ, f), (τ, tend), (τ, Δ) for the Gaussian function and (τ, f), (τ, tend), 

(τ, Δ), (τ, pmax) for the Berlage functions. 

 

Fig. 4. Graphs of function F(τ, p) projections on different coordinate axes for Gaussian (a) and 

Berlage (b) functions. Dots indicate the maxima.  

Owing to the oscillatory nature of the signals under investigation, the function F(τ, p) 

has a big number of local extrema that makes the refinement process more complicated. 

Parameter τ, responsible for the function g(t, p) shift relatively the signal is assumed to be 

continuous as long as scalar products are calculated for all possible values of the shift τ for 

each g(t, p) function.  

Based on the projection form, we can make a conclusion that the most important 

parameter is frequency f which affects the scalar product the most.  

3.1 Gradient descend method  

One of the most popular methods of multidimensional optimization is the gradient descend 

method. Gradient direction is the direction of the fastest function increase, thus, a 

maximum is determined by the motion along the gradient vector. As long as both the 

Gaussian and the Berlage functions are defined analytically, and F(τ, p) is a scalar product, 

to calculate the gradient, we can obtain explicit formulas  

 

end

( ), ( ), ( ),, , ;
g g g

s t s t s t
t f

 =
  

  

 
 
 

GF  (6) 

 

max end

( ), ( ), ( ), ( ),, , ,
g g g g

s t s t s t s t
p t f

 =
   

   

 
 
 

BF  

for the Gaussian and Berlage functions, respectively.  

The refined parameters are determined according to the following scheme:  
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 [ 1] [ ] ,i i + = + p p F  (7) 

where λ is the gradient step size and this step may be constant or variable. Depending on 

the choice strategy of step λ, we obtain different variations of the method, for example 

gradient method with step splitting, steepest descend method and so on. Initial 

approximation p[0] is determined by the matching pursuit method from function initial 

dictionary.  

Fig. 5 illustrates the results of refinement of the first function frequency parameter 

entering into the signal decomposition (Fig. 2b) by gradient descend methods with a fixed 

step λ. In Fig. 5a the dictionary is composed of Berlage functions with four distinctive 

frequency values (dashed lined), in Fig. 5b those are with five values. Both in the first and 

in the second cases, the method converges but slowly over 500 iterations on an average.  

 

Fig. 5. Parameter f refinement by gradient descend method with a fixed step. Initial dictionary 

contains 4 frequency values (a), 5 frequency values (b). 

As long as the function F(τ, p) has a complicated structure, realization of the steepest 

descend method, within which the maximum possible step is made in gradient direction, 

requires calculation of lengthy derivatives  

 

[ ] [ ]

[ ]

argmax ( , ),

( , ) 0.

i i

i

F

F


  

 


= + 


+  =



p F

p F
 (8) 

Thus, to improve the convergence, we decided to apply the gradient descend with step 

splitting.  

We choose a limit initial value λ* and a parameter (0,1)  , then at each iteration we 

assume that λ[i] = λ* and check the condition 
[ ] [ ] [ ]( , ) ( , )i i iF F   + p p F ; if it is 

fulfilled, we split the step [ ] [ ]i i  =  . 

Fig. 6 shows the results of refinement by gradient descend method with step λ splitting 

Owing to the step splitting procedure we succeeded to improve the method convergence, 

the plotted trajectories were obtained over 20 iterations.  
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Fig. 6. Refinement of f parameter by gradient descend method with step splitting, the initial dictionary 

contains 4 frequency values (a), 5 frequency values (b). 

 

Fig. 7. Block-scheme of refinement procedure for Berlage function by grid search method: 

parameters are refined separately (a), parameters are refined jointly (b), frequency is refined 

separately and form parameters are refined jointly (с). 
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3.2 Grid search method  

It is the simplest method for maximum search which consists in sequential calculation of 

function values for different arguments p and in the search for a maximum value. The 

arguments can be chosen randomly or with an equal step.  

When slightly changed, this method can be applied to optimize F(τ, p). The initial 

approximation p[0] (i = 0) is obtained by classical matching pursuit method. Then in the 

vicinity of p[0] we make a new grid, F(τ, p) is calculated in its each node and a new 

approximation of p[i+1] is chosen. If the current and previous approximations coincide, we 

split the grid step.  

Three variants of the grid search method were tested: each parameter is refined separately; 

parameters are refined jointly; frequency is refined separately, and form parameters are 

refined jointly. Fig. 7 shows the block-schemes of different variants of refinement by grid 

search method. The refinement is performed until the required accuracy is achieved or the 

defined number of refinement iterations is made.  

Fig. 8 shows the graphs of the function F(τ, p) projection for the pulse (Fig. 2b) on the 

coordinate axes (τ, f), and the results of refinement of the first function frequency by 

different variations of grid search method. In Fig. 8a the parameters are refined separately, 

in Fig. 8b they are refined jointly, and in Fig. 8с the frequency is refined separately from 

parameter form. In each of three cases we obtain acceptable solution.  

 

Fig. 8. Parameter f refinement by grid search method: parameters are refined separately (a), 

parameters are refined jointly (b), f is refined separately, and the form parameters are refined 

jointly (с). 
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3.3 Electromagnetic emission  

The main sources of natural electromagnetic radiation in VLF range are lightning 

strokes and the processes occurring in the ionosphere and magnetosphere [8]. The signals 

caused by lightning strokes are called atmospherics and just like geoacoustic emission they 

have pulse nature and similar kilohertz frequency range. Thus, we decided to test the 

approach on the basis of sparse approximation, which showed good results for geoacoustic 

signals, on electromagnetic emission signals (Fig. 9). 

The authors suggest to decompose atmospherics through a combined dictionary 

consisting of shifted and modulated Gaussian and Berlage functions. However, in contrast 

to geoacoustic signals, we decided to include the functions with the frequencies less than 

200 Hz into the dictionary since many signals under investigation have long-lasting low-

frequency component (just like in the signal in Fig. 9). 

 

Fig. 9. Comparison of an atmospheric with a geoacoustic pulse.  

Fig. 10 illustrates two-dimensional function F(τ, p) projections of the atmospheric 

(Fig. 9) on different coordinate axes: (τ, f), (τ, tend), (τ, Δ) for Gasussian function and (τ, f), 

(τ, tend), (τ, Δ), (τ, pmax) for Berlage function.  

From the graphs illustrated in Fig. 10, we can conclude that for atmospherics the 

frequency f also affects the dictionary function contribution into the signal under 

investigation the most.  

All the above mentioned ways of realization of the refinement procedure were tested on 

electromagnetic emission signals. Fig. 11 shows the refinement process of the first function 

frequency f, which is a part of an atmospheric (Fig. 9), by gradient descend method with 

fixed step, gradient descend with step splitting and three variants of grid search method.  
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Fig. 10. Graphs of function F(τ, p) projections on different coordinate axes for Gaussian (a) and 

Berlage (b) functions. Dots indicate the maxima.  

 

Fig. 11. Frequency f refinement by gradient descend methods with fixed step (a), gradient descend 

with step splitting (b) and three variants of grid search method: parameters are refined separately (c), 

parameters are refined jointly (d), f is refined separately, and the form parameters are refined 

jointly (e). 

Fig. 12 shows atmospheric decomposition in time and time-frequency domains. This 

decomposition is built by adaptive matching pursuit algorithm with refinement based on 

grid search method (frequency parameter is refined separately, and the form parameters are 

refined jointly). 
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Fig. 12. Atmospheric decomposition by adaptive matching pursuit. 

In order to choose the best variant of refinement, we made a calculation experiment. We 

selected 100 typical geoacoustic and 56 electromagnetic signals. The signals were 

decomposed into functions of a combined dictionary compound of Gaussian and Berlage 

functions. A dictionary with the following parameters was formed for geoacoustic pulses:  

f: 5 values from the range from 2000 to 20000 Hz; 

tend: 3 values from the range from 40 to 100%; 

pmax: 3 values from 5 to 30%; 

Δ: 3 values from 1.1 to 5; 

and for the atmospherics :  

f: 5 values from the range from 50 to 20000 Hz; 

tend: 3 values from the range from 20 to 100%; 

pmax: 3 values from 5 to 30%; 

Δ: 3 values from 1.1 to 7. 

For each numerical scheme, the average operation time and the achieved accuracy were 

measured. As a main criteria for accuracy, we chose the value calculated as a relation of 

residual norm to initial signal norm on a percentage basis  

 100%ERR
−

= 
Signal APR

Signal
. (9) 

ERR was calculated for each iteration, then the average value was calculated, thus, error 

average value was calculated for each numerical scheme for different number of functions 

entering into a decomposition.  

4 Results 

Fig. 13 represents the graphs of ERR value dependence on tested algorithm iteration 

number for atmospherics and geoacoustic pulses samplings. All the tested schemes allows 

us to improve the algorithm accuracy compared with the classical matching pursuit, 

however, the grid methods demonstrate better results in accuracy. It is the most vividly 

demonstrated on the sampling compound of atmospherics (Fig. 13a). We should note that 
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gradient descend methods require parameter more fine-tuning, a peculiar optimal value of 

step λ with respect to gradient corresponds to each signal. Grid methods are more universal 

and simple for application.  

Table 1 shows the time of algorithm execution for different number of refinement 

iterations. The fastest are those constructed on gradient method with step splitting and grid 

search methods, however, since the grid search method with frequency separate refinement 

gives better accuracy compared to other algorithms, this variant of adaptive matching 

pursuit will be used in further analysis of electromagnetic and geoacoustic signals.  

 

Fig. 13. Graphs of ERR value dependence on tested algorithm iteration number for 

atmospherics (a) and geoacoustic pulses (b). 

Table 1. Time of algorithm execution.  

Algorithm 
Execution time 

for 56 

atmospherics (s) 

Execution 

time for 100 

geoacoustic 

pulses (s) 

MP 1.82 9.73 

AMP + gradient descend with fixed step (400 it.) 53.84 198.42 

AMP + gradient descend with step splitting (20 it.) 18.01 67.26 

AMP + grid search, joint (5 it.) 12.77 79.21 

AMP + grid search, separate parameter refinement (5 it.) 12.78 79.35 

AMP + grid search, f is refined separately from form 

parameters (5 it.) 
12.83 79.22 

Fig. 14 shows decomposition of signals illustrated in Fig. 2, adaptive matching pursuit 

algorithm applying the same dictionary. In the result, decompositions from 4 and 7 

functions with the frequency of about 9 kHz were constructed with the error of 5%. The 

problem of «rough» sampling has been solved.  
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Fig. 14. Solution of “rough” parameter sampling problem  

The work was carried out by the means of the Common Use Center “North-Easten 

Heliogeophysical Center” CKP_558279. The research was supported by RSF, project 

No.18-11-00087. 
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