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Abstract. A low-mode geodynamo model is developed, controlled by 6-
jet convection in the core of the Earth. The model contains only four
modes, representing the fields of temperature, velocity, and two fields
of magnetic induction. The magnetic modes was chosen by combining
eight magnetic modes of free decay. There are two noise components
in the model. In the model, stable regimes of generation of a magnetic
field with reversals having a regular character were obtained. These
reversals do not cause changes in the convection structure.

1 Introduction

The process of formation of magnetic fields of planets and stars is successfully ex-
plained by the theory of hydromagnetic dynamo [6–8]. Dynamo system modeling is
an intensively developed section of dynamo theory. Their study is carried out using
direct numerical modeling, and on the basis of simplified models. DNS of magneto-
hydrodynamic equations allows one to reproduce the real magnetic field regimes of
planets and stars, but does not answer questions about their causes. In addition,
complete equations contain a lot of parameters, the estimates of which often vary by
many orders of magnitude, or do not exist at all. Therefore, using simple dynamic
systems of small dimension, they are trying to explain the physical cause, the signs,
the most important properties of this phenomenon, for example [1–3]. We will build
a large-scale model in the form of a low-dimensional dynamic system with the help of
some modifications of the classical spectral methods [4, 9].

2 Basic equations

Let us consider a spherical layer of an incompressibleuid (liquid core), which rotates
about the Oz-axis with an angular velocity Ω. In a spherical coordinate system
(r, θ, ϕ) the inner core boundary (ICB) is r = ri and the core-mantle boundary (CMB)
is r = ro. The temperature at the ICB and CMB is constant and equal to Ti and To,
respectively.

The equations of geodynamo considering the α-effect in the Boussinesq approxi-
mation have the form:
∗e-mail: feshenko.lk@yandex.ru
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The governing dimensionless parameters of the model are the Rossby number
Ro = u/2ωro, the Rayleigh number Ra = βg0δTr

3
o/νk, the Roberts number q = k/η,

the Reinolds number Re = uro/ν, the magnetic Reinolds number Rem = uro/η, and
the magnitude of α-effect Rα. In these expressions, ν denotes the kinematic viscosity,
β – the thermal expansion coefficient, g0 – is the gravitational acceleration at the
CMB, δT = Ti − To – is the temperature difference between the ICB and the CMB,
k – is the thermal, η – is the magnetic diffusivity end u – characteristic velocity.

This choice of dimensionless parameters implies that ro, r2o/η, δT , 2ωρ0η and√
2μμ0ρωη, with ρ – being the density and μ – the magnetic permeability, serve as

the length scale, time scale, temperature scale, pressure scale and the scale for the
magnetic field, respectively. To maintain the correct ratio at this length scale, the
radius of the inner coreri ri = 0.35.

In (1) the variable T denotes the temperature deviation from the equilibrium

profile Ts =
1/r − 1

1/ri − 1
+ Ti − 1.

It is assumed that turbulence is isotropic and the α-effect is used for scalar pa-
rameterization in the form α = cos θ.

For the velocity v, no-slip boundary conditions are applied. Moreover, it is as-
sumed that the magnetic permeabilities of the outer and inner cores are equal, and
the surrounding of the core is electrically non-conducting. Therefore, for the magnetic
field there are specified potential boundary conditions at the CMB and finiteness at
the center of the Earth. Finally, the temperature deviation is zero at the ICB and
CMB.

Then we apply some spectral decompositions for the velocity, temperature and
magnetic field. By the Galerkin method, using these decompositions, the equations
of the six-cells model will be obtained.

3 The convective part of the model

As the velocity mode, one of the eigenmodes of available oscillations in the layer of
a viscous liquid is used. The vertical component of this mode has no zeros along
the radial boundary between the boundaries of the layer, i.e. it ensures a complete
transfer of fluid between the boundaries. The temperature mode is also one of the
eigenmodes of free temperature oscillations (eigenmodes of the Laplace operator), it
is consistent with the spatial structure of the velocity mode.

It is important that, for any single-mode approximation, of veloocity to using
the Galerkin procedure, the Coriolis term in the Navier-Stokes equation will vanish.
Therefore, it is necessary to use a velocity, spatial structure, which contains infor-
mation about the rotation of the layer. As such a method one can use one of the
following: a mode, one of the solutions of the spectral problem
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μv −�p+
Rem
Ro

ez × v +
Ro

Re
� v = 0,v (r = ri) = v (r = ro) = 0. (2)

For convenience, we retain the same dimensionless parameters as in the equation
(1). Here the magnetic Prandtl number Pm = ν/η.

The non-viscosity analogue of this problem has a skew-hermitian symmetry and is
known as the Poincare problem. Therefore, we shall henceforth refer to the solutions
of the problem (2) as Poincare modes. In the viscous case, the problem operator does
not possess Hermitian or skew-Hermitian symmetry. This creates great problems with
obtaining its explicit solutions [5].

We shall use the simplest approximations of these solutions with the using of the
eigenmodes of free oscillations of a nonrotating shell. The structure of such modes is
well known. Formally, they solving the spectral problem

μv −�p+
Ro

Re
� v = 0,� · v,v (r = ri) = v (r = ro) = 0. (3)

The operator of this problem (the Laplace operator) of Hermitian solutions decays
into two orthogonal subspaces of toroidal and poloidal modes and form a complete
orthogonal system.

The toroidal and poloidal eigenmodes have the form, respectively

vT
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1
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∂
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∂
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)
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k = 0, 1, . . . , n = 1, 2, . . . ,m = −n, . . . , n,

(4)

where RT
k,n (r) and RP

k,n (r) some combinations of power functions and spherical
Bessel functions , and Y m

n (θ, ϕ) spherical harmonics.
The entire set of solenoidal fields that are zero on the boundary is the direct sum

of the linear orthogonal subspaces generated by the following sets of modes

HT
0 = {vT

k0,1,0,v
P
k1,2,0,v

T
k2,3,0,v

P
k3,4,0, . . .},

HP
0 = {vP

k0,1,0,v
T
k1,2,0,v

P
k2,3,0,v

T
k3,4,0, . . .},

HT
m = {vT

k0,m,±m,vP
k1,m+1,±m,vT

k2,m+2,±m,vP
k3,m+3,±m, . . .},

HP
m = {vP

k0,m,±m,vT
k1,m+1,±m,vP

k2,m+2,±m,vT
k3,m+3,±m, . . .},

ki = 0, 1, 2, . . . ,m = 1, 2, 3, . . .

(5)

Each of these subspaces is invariant under the operator of the problem (2). This
is easy to see if we write the matrix of the operator in the basis (4). Therefore, each
of the Poincare modes lies entirely in one of the subspaces (5).
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To simulate 6-jet convection, the space HP
2 , including the poloidal mode vP

0,4,±2,
is important. The formula (4) shows that the radial component of this mode in the
(θ, ϕ) direction is determined by the spherical harmonic Y ±2

4 .
In our model, we will use only one mode of velocity v0, which is the simplest

approximation of the Poincare modes from the subspace HP
2 . We specify v0 in the

form

v0 = β1v
T
1,3,−2 + β2v

T
1,3,2 + β3v

P
0,4,−2 + β4v

P
0,4,2 + β5v

T
0,5,−2 + β6v

T
0,5,2, (6)

where the coefficients βi are determined from the problem (2) by the Galerkin
method.

It can be seen that the radial component v0 has in (θ, ϕ)-structure according to
the structure Y ±2

4 .

Now we consider the eigen modes of temperature free dissipation in an external
core. They have the form Tk,n,m = Xk,n(r)Y

m
n , whereXk,n(r) are linear combinations

of spherical Bessel functions of the first and second kind.
In our model, the basic temperature mode T must be consistent with the radial

velocity component. Therefore, we define it by the formula

T = X0,4(r)
[
β3Y

−2
4 + β4Y

2
4

]
= β3T0,4,−2 + β4T0,4,2, (7)

where β3 and β4 are the same as in (6).
Finally, we choose the following velosity and temperature representation for our

model

v(r, t) = u(t)v0(r), T (r, t) = θ(t)T (r) (8)

4 A kinematic dynamo model

For the magnetic field, we use some of the free decay modes, i.e. solutions of the
spectral problem

ηB+�B = 0,� ·B = 0,

B (r = 0) �=∞,BT (r � 1) = 0,�×BP (r � 1) = 0,
(9)

where BT and BP are the toroidal and poloidal magnetic field components, re-
spectively.

The toroidal and poloidal solutions of this problem are

Tm
kn = aTknrot

(
jn

(√
ηTknr

)
Y m
n (θ, ϕ) r

)
,

Pm
kn = aPknrotrot

(
jn

(√
ηPknr

)
Y m
n (θ, ϕ) r

)
,

(10)
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where jn(·) denotes the spherical Bessel functions of the first kind. The eigenvalues
ηTkn and ηPkn are determined from the boundary conditions, and aTkn and aPkn the
normalization coefficients. Further we assume these coefficients such that the r.m.s.
of the modes is equal to unity. All these modes form an orthogonal system in the
core.

To select magnetic modes, we used the following scheme borrowed from [9]. First,
we order these modes as ascending eigenvalues (dissipation rate). The following se-
quence was obtained, where underlining means doublets with the same eigenvalues

P−1..1
01 ,T−1..1

01 ,P−2..2
02 ,T−2..2

02 ,P−3..3
03 ,P−1..1

11 ,T−3..3
03 ,P−4..4

04 ,T−1..1
11 ,P−2..2

12 ,

T−4..4
04 ,P−5..5

05 , . . . ,
(11)

Next, we selected several modes with the lowest eigenvalues, denoting them Bk(r).
The magnetic field is written as B (r, t) =

∑
k

gk(t)Bk(r) and substituted into the

induction equation (the third equation in (1)). The velocity, at the same, time can be
written as (8), where u(t) = 1. Now applying the Galerkin method yields the system

dgk
dt

= Rm
∑
i

Wkigi +Rα

∑
i

Akigi − ηigi,

Wki =

∫
rot (v0 ×Bi)BkdV,Aki =

∫
rot (cos θ ×Bi)BkdV,

(12)

where ηi is an eigenvalue of Bi.
In fact, we have obtained a small-mode approximation in kinematic dynamo with

six convective cells. Let us denote by λi the eigenvalues of the matrix of the system
(12). The dynamo "works" ifmax�λi > 0. The mode with its eigenvalue is the leader,
it grows faster than others. It is important that if the eigenvalue of the leading mode
is complex, the magnetic field will oscillate.

Thus, we leave eight magnetic modes out of (11) that perform a working dynamo:
P0

01, P
±2
03 , P

0
11, T

±2
04 , P

±2
05 .

The scheme of generation of magnetic modes of large-scale convection and the
α-effect is shown in fig.4. To get acquainted with this particular choice of modes it is
possible in [4].

5 A combined model of magneto-convection

In the above-described kinematic dynamo, only an unlimited growth of the field is
possible. To obtain a stable generation of a limited field, a suppression mechanism
must be introduced. Physically, this is realized due to the influence of the field through
the Lorentz force on the structure of the flows. We also introduce into the system the
mechanism of algebraic suppression of the α-effect.

Recall that in our construction Rem is a fixed value of the amplitude u(t) of the
velocity mode v0. Therefore, we further consider a model of magnetohydrodynamic
convection with variable velocity. To do this, the above-described decomposition of
velocity, magnetic field and temperature must be substituted into all equations (1)
and Galerkin method applied.

We introduce the noise components into the model in the α – generator and in the
term before the Rayleigh number. We obtain a nonlinear dynamical system describing

5
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Figure 1. The scheme dynamo. Solid arrows: large-scale generator; dotted arrows:α-
generator.

self-consistent 6-jet magneto-convection in the core of the Earth

du(t)

dt
= − 1

Re
μu(t) + qRaSθ(t) +

1

Ro

8∑
i,j=1

Lijgi(t)gj(t),

dθ(t)

dt
= −qλθ(t) +Hθ(t),

dgk(t)

dt
= u(t)

8∑
i=1

Wkigi(t) +
Rα

1 +
∑8

i=1 gi(t)
2

8∑
i=1

Akigi(t)− ηkgk(t)

(13)

where μ and ς – eigenvalues of the velocity mode v and the temperature mode T ,
respectively, and S,Lij , H,Wij , Aij – are Galerkin coefficients. Noises ξ(t) and ζ(t) is
a stochastic process with zero mean.

6 Simulation results

A numerical study was conducted in a model with eight modes. When performing a
numerical simulation with the model (13), we used molecular values of the dissipation
coefficients k = 10−5m2/s, η = 1m2/s, following the estimations made in [13]. The
outer radius of the core ro = 3480 km and the angular velocity Ω = 7.29 × 10−5

rad/s. The relevant parameter values are Re = 108, Pm = 105 and Ro = 3 · 10−6.
Thus, there remain three control parameters: the Rayleigh number, the magnetic
Reynolds number, and the amplitude of the α effect, depending on the values of these
parameters, different dynamo modes are obtained. Note that by fixing the Reynolds
number and varying the magnetic number of Reynolds, we actually vary the kinematic
viscosity ν, which is the most uncertain parameter in the dynamo system. Estimates
of the kinematic viscosity for the Earth according to estimates of various studies vary
by many orders of magnitude.

6

 
 

/, 02014 (2018) e3sconf/201E3S Web of Conferences 62 8620https://doi.org/10.1051

Solar-Terrestrial Relations and Physics of Earthquake Precursors

2014



Table 1. Eigenvalues for (Rem, Rα) = (10, 50), (Rem, Rα) = (20, 50), (Rem, Rα) = (50, 20)
and (Rem, Rα) = (70, 30) respectively.

1.2278 1.2277 0.1904 0.7231
1.2279 1.2279 0.1916 0.3176
0.747e-5 0.104e-4 0.385e-4 0.949e-2
0.486e-6 0.912e-6 0.164e-5 0.732e-3
0.174e-6 0.209e-6 0.32e-6 0.142e-3
0.196e-8 0.171e-7 0.246e-7 0.105e-4
0.152e-9 0.549e-10 0.942e-10 0.501e-5
0.308e-10 0.371e-9 0.131e-8 0.304e-7

First, calculations of the solutions of the (13) system were carried out for iden-
tically zero. The model used four Rayleigh numbers Ra = 1010, Ra = 6.5 · 1010,
Ra = 1011 and Ra = 5 · 1011. Different Rα and Rem numbers values were 0.1÷ 100.

First of all, an experiment was conducted for several combinations of selected
parameters, the purpose of which was to determine the real dimension of the magnetic
subspace of the model. The points of the calculated trajectories in the 8-dimensional
space of magnetic modes were considered as an ellipsoid of scattering. It turned out
that one, maximum two semi-axes are much more than the others. Those. one can say
that the magnetic subspace is no more than two-dimensional. And the coordinates of
the vectors of these largest axes determine the combined magnetic modes. In practice,
these calculations were performed according to the standard scheme for analyzing the
main components [12]. Examples of calculations are given in the table 1.

The analysis of the directions of the largest semiaxes showed that the initial mag-
netic modes are mainly divided into two groups corresponding to these directions, see
the table 2. Therefore, it can be said that the model implements the generation of a
magnetic field by mutual pumping of two magnetic structures corresponding to two
combined modes. Physically, in axisymmetric works on a dynamo, this is expressed
by the mutual pumping of toroidal and poloidal fields. In this paper, this separa-
tion does not work, but the general principle of the two magnetic structures that
exchange energy continues to be preserved. Thus, it is proposed to make a two-mode
combination of eight modes.

7
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Table 2. The eigenvectors corresponding to the two largest eigenvalues for
(Rem, Rα) = (10, 50), (Rem, Rα) = (20, 50), (Rem, Rα) = (50, 20) and (Rem, Rα) = (70, 30)

respectively.

B I II I II I II I II
P0

01 -0.00004 -0.235 -0.00009 -0.074 -0.004 -0.214 -0.014 0.562
P−2

03 -0.00003 0.572 0.000003 -0.614 0.0009 -0.58 -0.048 -0.275
P2

03 -0.576 -0.079 0.49 0.164 -0.543 -0.031 -0.328 -0.207
P0

11 0.742 0.21 0.835 0.084 -0.838 -0.01 -0.89 -0.116
T−2

04 -0.336 0.667 -0.237 0.708 0.021 -0.683 -0.167 0.51
T2

04 0.061 0.344 0.066 0.268 0.038 -0.306 -0.183 0.537
P−2

05 -0.027 -0.034 -0.009 0.031 0.0008 0.135 -0.187 -0.377
P2

05 0.0021 0.001 -0.006 0.081 0.0001 0.231 0.012 0.283

Finally, we choose the following representation of the magnetic field for our model

B1 = k1P
0
01 + k2P

2
03 + k3P

−2
03 + k4P

0
11 + k5T

2
04 + k6T

−2
04 + k7P

2
05 + k8P

−2
05

B2 = m1P
0
01 +m2P

2
03 +m3P

−2
03 +m4P

0
11 +m5T

2
04 +m6T

−2
04 +m7P

2
05 +m8P

−2
05

(14)
Thus, the system (13) acquires a view

du(t)

dt
= − 1

Re
μu(t) + (1 + ζ(t)) qRaSθ(t) +

1

Ro

2∑
i,j=1

Lijgi(t)gj(t),

dθ(t)

dt
= −qλθ(t) +Hθ(t),

dg1(t)

dt
= u(t)

2∑
i=1

W1igi(t) +
Rα (1 + ξ(t))

1 + g1(t)2 + g2(t)2

2∑
i=1

A1igi(t)− η1g1(t),

dg2(t)

dt
= u(t)

2∑
i=1

W2igi(t) +
Rα (1 + ξ(t))

1 + g1(t)2 + g2(t)2

2∑
i=1

A2igi(t)− η2g2(t),

(15)

Two noise processes ξ(t) and ζ(t) have been added to the system (15). These pro-
cesses are the result of synchronization of the higher discarded velocity and magnetic
field modes. Noise excitation ζ(t), which simulates the fluctuations of the heat flux

8
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from the inner core. Noise excitation ξ(t) models the spontaneous synchronization of
small-scale modes that are not used in the model [14]. This spontaneous synchroniza-
tion effect is a well-known phenomenon in the theory of turbulence. The structure
of processes is as follows. We define on the time axis a random sequence of points
0 < τ1 < θ1 < τ2 < θ2 < . . . < τk < θk < . . . We assume that the of the coherent
structure number k is formed at the time τk and is destroyed at the time θk. Then
T est
k = τk − θk−1 is the latensy time for the formation of the next structure, and

Tk = θk − τk is the time of its existence. During the waiting time, the process ξ(t)
is zero, and for the time of existence ξ(t) = ξk. Here ξk are independent random
variables with zero mean. The laws of distribution of these quantities, as well as T est

k

and Tk, are chosen for numerical modeling.
The value of the Rayleigh number Ra = 1010 does not give us stable solutions,

it is obvious that it is not enough to launch the dynamo. The value of the Rayleigh
number Ra = 5 · 1011 immediately goes to infinity, it turns out to be too large. The
two average values of the Rayleigh number Ra = 6.5 · 1010 and Ra = 1011 give an
approximately identical picture of the solutions. We demonstrate the results of the
study of this model. On the right are detailed fragments of calculations.

In fig.2. it can be seen that the velocity retains its sign, and in a magnetic field
quasi-periodic reversals are observed with individual bursts. In fig.3. system goes
out stationary. In fig.4. we see regular fluctuations in speed around a single level.
And the magnetic field works in the mode of bursts. Situations with a change in the
sign of speed are not physically plausible because assumes a reversal of convection
in the opposite direction, but if we average the velocity over the period (i.e. go to a
larger time scale), the reversals in the field are preserved, and the speed will become
constant. In fig.5. we see the same velocity oscillations as in the previous case, but
there are no reversals for the magnetic field, but the solution is in the nature of bursts.

In this way, as a result of the calculations, we found that for small values of the
control parameter Rem < 40, we have mainly quasi-periodic and stationary solutions.
With a large value of Rem > 50 and there are regular oscillations of the magnetic
field and dynamo-burst with reversals. This is reflected in the time graphs of the
amplitudes of the velocity and the dipole part of the field.

Figure 2. Modes of change of the amplitude of speed (upstairs) and one of the magnetic
modes (at the bottom). (Rem, Rα, Ra)=(10,50,6.5 · 1010).

9

 
 

/, 02014 (2018) e3sconf/201E3S Web of Conferences 62 8620https://doi.org/10.1051

Solar-Terrestrial Relations and Physics of Earthquake Precursors

2014



Figure 3. Modes of change of the amplitude of speed (upstairs) and one of the magnetic
modes (at the bottom). (Rem, Rα, Ra)=(20,50,6.5 · 1010).

Figure 4. Modes of change of the amplitude of speed (upstairs) and one of the magnetic
modes (at the bottom). (Rem, Rα, Ra)=(50,20,6.5 · 1010).

In the simulation, we used the exponential distribution law for waiting times
and existence, and these quantities themselves were independent. Average values
of 〈T est

k 〉 = 5 and 〈Tk〉 = 30, i.e. the characteristic time of existence of coherent struc-
tures is much less than their waiting time. The jumps of ζk and ξk were uniformly
distributed over the interval [-1;1].

The same values of the control parameters were used, with the imposition of noise.
This is reflected in the time graphs of the amplitudes of the velocity and the dipole
part of the field (fig.6.)-(fig.9.).

By introducing noise components into the system, we expected to transfer the
system from one parameter space to another, expecting to switch dynamos from one
mode to another. But such a switch, as can be seen from the figures does not occur,
the reason may be that we push the system too often. In the development of the

10
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Figure 5. Modes of change of the amplitude of speed (upstairs) and one of the magnetic
modes (at the bottom). (Rem, Rα, Ra)=(70,30,6.5 · 1010).

model, if the average waiting time and the existence of these structures were large,
then it should already be infinitely large. As an option, the power of waiting time.

Figure 6. Modes with noise components of change of the amplitude of speed (upstairs) and
one of the magnetic modes (at the bottom). (Rem, Rα, Ra)=(10,50,6.5 · 1010).

7 Conclusions

In this paper, a low-mode dynamo model is developed. The model contains, it seems
to us, the minimum possible number of modes (four). For the fields of speed, tempera-
ture, and magnetic induction, the representation is used, using modes combined from
the eigenmodes of the Laplace operator. For speed, this combination approximates
one of the modes of the Poincare operator. The temperature mode is combined to
match the speed. The two magnetic modes are combined on the basis of a computa-
tional experiment in a model containing eight modes of free damping of the magnetic
field. For this, the ellipsoid of scattering was calculated. By the magnitude of the

11
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Figure 7. Modes with noise components of change of the amplitude of speed (upstairs) and
one of the magnetic modes (at the bottom). (Rem, Rα, Ra)=(20,50,6.5 · 1010).

Figure 8. Modes with noise components of change of the amplitude of speed (upstairs) and
one of the magnetic modes (at the bottom). (Rem, Rα, Ra)=(50,20,6.5 · 1010).

eigenvalues, it was clear that sometimes there are signs of a single-mode approxima-
tion in the system, but basically it is two-mode. It is known that in the axisymmetric
case of a dynamo this is expressed by the mutual pumping of toroidal and poloidal
fields. In this paper, this separation does not work, but the general principle of the
two magnetic structures that exchange energy continues to be preserved.

Numerical simulation shows that the model can be implemented in a stable mode
of generating a magnetic field with and without reversals. The field reversals in the
model have a regular character, or the character of dynamo-bursts. A wide variety of
modes can also be provided by different distributions of the waiting times for pulses in
noise. For simplicity, we chose an exponential distribution for modeling. It seems that
the introduction of other types of distributions, for example, a power distribution, will
give more complex statistics of reversals.
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Figure 9. Modes with noise components of change of the amplitude of speed (upstairs) and
one of the magnetic modes (at the bottom). (Rem, Rα, Ra)=(70,30,6.5 · 1010).
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