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Abstract. In study with the help of the spectrum of maximal Lyapunov exponents, dy-
namic regimes of the stick-slip effect were studied with allowance effect of hereditar-
ity. Spectrum of the Lyapunov exponents were constructed using the Wolff algorithm
with Gram-Schmidt orthogonalization depending on the values of the control parameters-
friction and adhesion coefficients, as well as fractional index values, which determine the
heredity of the dynamical system under consideration. The existence of an area of posi-
tive values of the maximum Lyapunov exponents is shown, which indicates the presence
of chaotic regimes. Oscillograms and phase trajectories are constructed.

1 Introduction

The stick-slip effect is investigated in tribology when the load moves on a spring along some surface
of a solid body that has adhesion and dynamic friction [1]. With this movement of the load, quasi-
periodic glide, its adhesion and detachment from the surface can occur, depending on the strength of
the adhesion energy of the solid surface and the rigidity of the spring [2], [3].

Such motion regimes are encountered, for example, when describing the motion of a probe along
the surface of a solid in an atomic force microscope in micro and nano scales [2], while studying the
effect of deformation localization on the stability of friction sliding in dense amorphous materials [4],
but on a macro scale the stick-slip effect is investigated, for example, in a distributed model of a drill
string with Coulomb friction along a well [5], in a mechanical earthquake model [6] based on the
motion of lithospheric plates and can manifest itself in electromagnetic signals lach of lithospheric
origin [7].

2 Statement of the problem

There are various approaches to describing the stick-slip effect, for example, taking into account the
atomic structure of friction bodies [8], in [9] the study of sliding objects and structures was carried
out by modifying the Newmark model – a model of a rigid sliding block with Coulomb friction. This
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modification somewhat weakens the rigidity of the Newmark model due to the dependence of the
frictional force on its velocity (the Strybeck friction model).

We consider another approach in the approximation of equally alternating potential wells, which
was proposed in [2], [3]. It is known that in classical and quantum mechanics the potential well is
given by the relation:

U (x) = −
U0

ch2 (x/x0)
, (1)

where U0 and x0 – depth and width of tpe hotential well.
If we expand tre Fouriwr series in (1) and differentiate with respect to the vnhiable x for the

periodei consirvatcve force, we obtain the folloeiag formula:

F (x) =
U0

x0

∞∑
n=1

an sin (nx/x0) , an = 2n
∫ 1

0

cos (πny)

cosh2 (πy)
dy. (2)

Further in [2] it was stated that for practical calculations it is sufficient to take the first seven
coefficients from the formula (2), and the mathematical model of the stick-slip effect can be written
in the form of the Cauchy problem:

ξ̈ (t) + λξ̇ (t) + ω2ξ (t) = bt + c
7∑

n=1

an sin (nξ (t)) , ξ (0) = ξ0, ξ̇ (0) = ξ1, (3)

where ξ (t) =
x (t)
x0

– displacement function, λ – coefficient of friction, b – speed of spring movement,

c =
U0

x0
– coefficient of adhesion, ξ0, ξ1 – specified constants determining initial conditions.

The mathematical model (3) describes a nonlinear oscillator with dynamic friction and external
periodic action, characterizing the sticking-slip effect [3]. It should be noted that the stick-slip effect
is clearly manifested in the case of a reduction in spring rigidity and the speed of its movement b , as
well as with increasing adhesion c.

The time of the load in the potential well depends on the speed of the spring movement b. At
high speeds, the loads do not practically appear, the cargo slips. The coefficient of friction λ affects
the attenuation of the cargo when it hits a potential well. Therefore, it can be noted that a significant
influence on the stick-slip effect is exerted by the triple of control parameters λ, b and c.

In paper, we generalize the mathematical model of the stick-slip (3) effect in the case of a heredi-
tarity or "memory" property that occurs in hereditary mechanics [10] and can be due, for example, to
the fractal properties of the surface of a solid or cargo. Following Volterra’s paper [11], we can write
down the following Cauchy problem:∫ t

0
K1 (t − τ) ξ̈ (τ) dτ + λ

∫ t

0
K2 (t − τ) ξ̇ (τ) dτ + ω2ξ (t) = (4)

= bt + c
7∑

n=1

an sin (nξ (t)) , ξ (0) = ξ0, ξ̇ (0) = ξ1,

where K1 (t − τ) and K2 (t − τ) – difference kernels, which we will call memory functions.
Memory functions K1 (t − τ) and K2 (t − τ) are chosen on the basis of the structure of rubbing

bodies. Of great interest, in our opinion, are the power functions of memory K1 (t − τ) and K2 (t − τ),
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and since they are the most common in nature and can to some extent describe the fractal properties
of objects [12]. We choose the memory functions K1 (t − τ) and K2 (t − τ) in the form:

K1 (t − τ) =
(t − τ)1−β

Γ (2 − β)
,K2 (t − τ) =

(t − τ)−γ

Γ (1 − γ)
, 1 < β < 2, 0 < γ < 1, (5)

where Γ (·) – gamma function, β and γ – constants, associated with the fractal properties of objects or
media.

The choice of functions (5) makes it possible to use the mathematical apparatus of fractional
calculus. Indeed, if we substitute the relations (5) into the model equation (4) and take into account
the definition of the derivative of the fractional derivative in the sense of Gerasimov-Caputo [13], [14],
then finally we obtain the following non-local Cauchy problem:

∂
β
0tξ (τ) + λ∂

γ
0tξ (τ) + ω2ξ (t) = bt + c

7∑
n=1

an sin (nξ (t)) , ξ (0) = ξ0, ξ̇ (0) = ξ1, (6)

The Cauchy problem (6) describes a fractal nonlinear oscillator and was investigated in the au-
thor’s papers [15], [16]. In [17], [18], a non-local explicit finite-difference scheme was proposed and
investigated, and in [15], by analogy with [19], a generalization of the model (6) was proposed in the
case of order variables β = β (t) and γ = γ (t).

Next, we will investigate the dynamic regimes of a nonlinear fractal oscillator (6). Note that in
the case of values, we get the classic stick-slip (3) effect. Therefore, we can assume that the stick-
slip effect, taking into account the heredity, will be affected not by three, but already by five control
parameters: β, γ, λ, b, c. On the other hand, we will try to determine the conditions for the appearance
of the stick-slip effect by investigating the dynamic regimes of the system (6) and bifurcation diagrams
[20].

3 Results of the study

The investigation of dynamic regimes will be carried out with the help of constructing the spectra of
maximal Lyapunov exponents for this we shall use the well-known Wolf algorithm with the Gram-
Schmidt orthogonalization proposed in [21], as well as the nonlocal explicit finite-difference scheme
for numerical calculation, investigated in the author’s papers [17], [18].

Example 1. (Classic stick-slip effect). Consider the existence of the stick-slip effect as a function
of the velocity of the spring b, described by the model (3). To do this, we select the values of the
control parameters: t ∈ [0, 100], λ = 0.25, ω = 1, c = 50, a1 = 0.436, a2 = 0.344, a3 = 0.164,
a4 = 0.058, a5 = 0.021, a6 = 0.004, a7 = 0.003, ξ0 = 0.2, ξ1 = 0.3. For a numerical scheme, we
choose the number of computed nodes N = 200000, and the step of the calculated grid tau = 0.005.
The results of the simulation are shown in Fig. 1 and Fig. 2.

In Fig. 1 that in the spectrum of maximum Lyapunov exponents positive values that correspond to
the chaotic regime are observed, as well as negative ones that are responsible for the regular dynamics.

In Fig. 2 shows the following graphs: the oscillogram, the displacement velocity and the phase
trajectory of the movement of the load at the speeds of the spring b = 1 (b,d,f ) and b = 2.5 (a,c,e ).

The first case (b = 1) corresponds to the negative value of the Lyapunov exponent or to the regular
regime. In Fig. 2b shows an oscillogram of the stick-slip effect, which shows how the weight under
detachment experiences damped oscillations in a potential well, the character of which depends on
the coefficient of dynamic friction λ. The complete stopping of the cargo in the potential well will
correspond to the case (Figure 2d).
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Figure 1. Spectrum of maximum Lyapunov exponents as a function of the speed of movement of the spring
b = [0.5, 3] in increments h = 0.05

Figure 2. Oscillogram, displacement speed and phase trajectory of the load at different speed of spring move-
ment: b = 0.25 – a,c,e; b = 1 – b,d,f

The movement of the cargo to the next potential well occurs evenly - the time of finding the cargo
in potential wells is the same, which is reflected in the phase trajectory (Fig. 2f ).

In the case b = 0.25, we have a positive value of the maximum Lyapunov exponent, and therefore
there must be a chaotic regime. Indeed, we see in Fig. 2a,c,e, that the movement of cargo in potential
wells is highly uneven – the time of the load in potential wells is different, also the load sometimes
slips by experiencing slowly damped oscillations, so it does not stop in the potential well and hence
in this case there is no stick-slip effect.

Starting from Fig. 2, we can conclude that the stick-slip effect is manifested when the speed of the
spring b travel decreases.

Consider the existence of the stick-slip effect as a function of the adhesion energy c according
to the mathematical model (3). The values of the control parameters are taken from the previous
example. The spectrum of the maximum Lyapunov exponent L, constructed in dependence on the
values c of the adhesion energy of the solid surface, is shown in Fig. 3.
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Figure 3. Spectrum of maximum Lyapunov exponents as a function of the velocity of the spring c = [1, 50]
moving with a step h = 1

Figure 4. Oscillogram, displacement speed and phase trajectory of the load for different adhesion energy: c = 10
– a,c,e; c = 7 – b,d,f

In Fig. 4. Oscillograms, graphs of the speeds of cargo displacement and phase trajectories are
given for surface adhesion energy values: c = 7 (L > 0) and c = 10 (L < 0). These values from the
spectrum of the Lyapunov exponent (Fig. 3) were chosen as an example for demonstrating the con-
ditions of existence and the absence of the stick-slip effect. In the first case, we’ve chaotic dynamics
(the effect is absent), since the maximum Lyapunov exponent is positive (the effect is present), and in
the second case the regular dynamics due to the negativity of the maximum Lyapunov exponent. We
note that an increase in the adhesion energy of the solid surface leads to an increase in the time of the
load in the potential well (Fig. 5).

From Fig. 5 that with the value of the adhesion coefficient c = 70, the time of the load in the first
potential well is about t ≈ 60 c, which is much higher (t ≈ 45 c) than c = 50 for (Fig. 2b).
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Figure 5. Oscillogram, constructed taking into account the coefficients of adhesion c = 70, velocity of spring
movement b = 1 and dynamic friction λ = 0.25

It was mentioned above that the coefficient of dynamic friction affects the nature of the damping
of the oscillations.

Figure 6. Spectrum of the maximum Lyapunov exponent L (λ) as a function of the values of the coefficient of
friction λ ∈ [0, 1] in increments h = 0.05

From Fig. 6 we see two areas of variation of the parameter values: λ, λ ∈ [0, 0.225] and λ ∈
(0.25, 1] where for the first region the values of the maximum exponent are positive, and for the second
- negative. Therefore, the first area of variation of the parameter values is responsible for the absence
of the stick-slip effect, and the second for its presence. As an example, see Fig. 7 oscillograms,
displacement velocity graphs and phase trajectories of the load at friction coefficient values λ: λ = 0.1
and λ = 0.5. In the first case of Fig. 7a, c, e we see that the load oscillations do not decay, and in the
second Fig. 7b, d, f, the oscillations decay, which corresponds to the stick-slip effect.
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Figure 7. Oscillogram, displacement speed and phase trajectory of the load for various coefficients of dynamic
friction: λ = 0.1 – a,c,e; λ = 0.5 – b,d,f

We showed that the classical stick-slip effect is influenced by a triple of control parameters: λ, c, b.
Consider the stick-slip effect, taking into account the heredity (control parameters β and γ).

Example 2. (The stick-slip effect taking into account the heredity). The values of the basic
control parameters are taken from the previous example. The number of nodes of the grid was chosen
N = 8000 to increase the counting time. We construct the spectra of Lyapunov maximum exponents
with respect to the control parameters β and γ (Fig. 8).

Figure 8. Spectra of maximum Lyapunov exponents: a) – γ = 0.8, β ∈ [1.04, 1.8] with step h = 0.04; b) –
β = 1.1, γ ∈ [0.21, 1] , with h = 0.1
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From Fig. 8 It can be seen that both spectra of the maximum Lyapunov exponent don’t have
positive values. This means that for this example, heredity doesn’t affect the stick-slip effect. Indeed,
if we recall Volterra’s work [11] on the hereditarity oscillator, then in the relation for the total energy
for this system an additional term appears that is responsible for the energy dissipation. Therefore,
heredity for stick-slip effect will increase friction and load will not slip.

We note that the calculated curves of the Lyapunov exponents can be clarified by increasing the
step of the calculated grid and the step of digitization in changing the values of the control parameters,
which will lead to an increase in the estimated time.
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5 Conclusion

In this work, using the Lyapunov spectral parameters, we showed that the stick-slip effect depends
mainly on the three control parameters λ, c, b, the hereditarity increases friction and the effect can be
pronounced. A more detailed study of the stick-slip effect can be associated with the construction of
maps of dynamic regimes.
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