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Abstract. In the dynamic model αΩ-dimensions are simulated reversions of the mag-

netic field with a varying intensity of the α-generator. We consider such changes in inten-

sity as a consequence of the synchronization of the higher discarded modes of the velocity

field and the magnetic field. Dynamo regimes are studied depending on the change in the

intensity of the generator.

1 Introduction

The generation of the magnetic field with a strong differential rotation is described by αΩ-dinamo.

The property of dynamo systems is the presence of a reversal without a significant rearrangement of

the motion of the conducting medium [1, 2]. In this paper are described the large-scale αΩ-dinamo

model and simulated reversions of the magnetic field with a varying intensity of the α-generator. We

consider such changes in intensity as the effect of synchronization of the higher discarded modes of

the velocity field and the magnetic field [4]. Dynamo regimes are studied depending on the intensity

change of the a generator.

2 Equations and model parameters

We assume in the αΩ-dynamo model that the velocity field v and the magnetic field B are axially sym-

metric in a spherical shell of viscous incompressible liquid rotating around an axis 0z with a constant

angular velocity Ω. We consider that the velocity field of a viscous fluid v is zero on the inner r = r1

and the outer r = r1 spherical envelope boundaries (boundary conditions of adhesion); the magnetic

permeability of the inner and outer nuclei are the same, the medium outside the nucleus (r > r2) is

not conductive (vacuum boundary conditions at the outer boundary and conditions of boundedness at

the center of the Earth are assumed). We assume that the mean flow v has the character of differential

rotation, corresponding to the modes vT
k,1,0 from the linear shell {vT

k1,1,0
, vP

k2,2,0
, vT

k3,3,0
, vP

k4,4,0
, . . . } is

invariant under the Coriolis drift. Any such mode generates the rest of the chain [5].

The velocity field of a viscous fiuid is approximated by the following combination [3, 5]:

v = u(t)v0 = u(t)(α1vT
0,1,0 + α2vP

0,2,0 + α3vT
0,3,0 + α11vT

1,1,0 + α13vT
1,3,0), (1)
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where v0 is the Poincare mode, |v0| = 1, u(t) is the velocity amplitude, the components of the velocity

field are independent of time.

The magnetic field is represented by the minimum number of lower eigenmodes

BP
0,1,0,B

T
0,2,0,B

P
0,3,0, sufficient to obtain an oscillating dynamo [5]

B = BT
2(t)B

T
0,2,0(r) + BP

1 (t)BP
0,1,0(r) + BP

3 (t)BP
0,3,0(r), (2)

where the components of the magnetic field are considered independent of time and the component

BP
1 (r) is dipole.

The physical parameters of the fluid are assumed to be unchanged, the turbulence in the core is

isotropic and we use the scalar parametrization of the α-effect as a function α(r, θ) = α(r) cosθ, where

max|α(r, θ)| ∼ 1. Two variants of the radial part of the α-effect are used: α(r) = −sin(π(r − r1)) and

α(r) = r.

Magnetohydrodynamic (MGD) equation, containing the equation of Navier-Stokes, the magnetic

field B induction equation, continuity condition of the velocity field v, the magnetic field B solenoidal

condition, boundary conditions and taking into account the α-effect, in the Boussinesq approximation

have the following form, respectively:

∂v
∂t
+ (v∇)v = νΔv − 1

ρ0

∇P − fK + fout + fL,

∂B
∂t
= ∇ × (v × B) + νmΔB + ∇ × (

α(r, θ) B
)
,

∇ · v = 0,
∇ · B = 0,
v(r1) = v(r2) = 0,

(3)

where P is pressure, ρ0 is density, ν is kinematic viscosity, νm is magnetic viscosity, fout is mass density

of the external-force field (conditions a poloidal mode of velocity), the mass density of Lorentz force

is assumed equal

fL =
1

ρ0μ0μ
(∇ × B) × B,

the mass density of Coriolis force is given by

fK = 2Ω × v,

r1 and r2 are the position vector to the inner and outer boundaries of the envelope, respectively.

We make dimensionless the Navier-Stokes equation and the magnetic induction equation in ac-

cording to accepted restrictions. Let us take for the unit of measurement the characteristic time scale

of the dissipation of the magnetic field t ∼ (L2/νm), where L – radius of the liquid core, accepted

as a unit of the length. In addition, we introduce the mechanism of algebraic suppression of the α-

effect and oscillations due to the function Z = Z(t), which is given by the differential equation of the

following form

∂Z
∂t
= B2 − bZ (4)

where b – scale factor, with the initial condition

Z(0) = 0. (5)
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As a result, the system (3) is converted to the dimensionless form with the inclusion of the condi-

tions (4) and (5) in it:

∂v
∂t
+ (Remv∇)v = PmΔv − ∇P − E−1Pm(ez × v) + (1 + ζ(t)) fout + (∇ × B) × B,

∂B
∂t
= Rem∇ × (v × B) + ΔB + (Rα − Z)∇ × (

α(r, θ) B
)
,

∇ · v = 0,
∇ · B = 0,
v(r1) = v(r2) = 0,

(6)

where Pm is magnetic Prandtl number, Rem is magnetic Reynolds number, Rα is range of the α-effect,

fout is mean mass density of the external-force field, the fluctuations of which are ensured by the

stochastic process ζ(t) with zero mean in this case. This process simulates the spontaneously arising

and vanishing coherent effect of the discarded higher modes of the velocity field. The structure of

the process was determined as follows [3]: a random sequence of points 0 < τ1 < θ1 < τ2 < θ2 <
. . . < τk < θk < . . . is given on the time axis. We assume that the k–th account of the coherent

structure is formed at the moment τk and is resolved at the moment θk. Then T est
k = τk − θk−1 is the

waiting time for the formation of the next structure, and Tk = θk − τk is the time of its existence.

During the delay T est
k the process ζ(t) = 0, and during the existence time ζ(t) = ζk, where ζk are

independent random variables with zero average, uniformly distributed on the segment [−0.01, 0.01].

In modeling, the exponential distribution rule for the delay T est
k and the existence time Tk was used

and these variables themselves were independent. The average values of 〈T est
k 〉 = 5 and 〈Tk〉 = 30,

that is the characteristic time of existence of coherent structures is much shorter than their waiting

time.

We apply the Galerkin method to the system (6) and get the following system’s form:

∂u
∂t
= −Pmu(t)

∑

k
α2

kλk + (1 + ζ(t)) fout +
∑

i, j, k
αiLi jkBjBk,

∂Bi

∂t
= Remu(t)

∑

j, k
α jWi jkBk − μiBi + (Rα − z)

∑

k
WαikBk,

∂z
∂t
=

∑

k
B2

k − bz,

(7)

where fout is mass density of the external–force field , μi is the viscous dissipation parameter, λi is

eigenvalues of the Poincare mode, parameters Li jk,Wi jk,Wαi j are the volume integrals of the fields

under consideration.

3 The results of the numerical simulation

We’ll carry out a numerical investigation of the obtained system (7). The computational experiments

with the model were carried out for the following boundary conditions at the initial instant of time

t = 0:

u = 1, BT
2 = 0, BP

1 = 1, BP
3 = 0, Z = 0. (8)

and the accepted values of the model parameters: magnetic Reynolds number Rem varied in the range

(0, 1000], α-effect amplitude Rα was considered on the interval (0, 100], average density of external

force fout and the scale factor b are equal to one and to ten.

We note, that the different regimes of dynamo with oscillations and reversions were obtained

only for the case of specifying the scalar parametrization of the α-effect in the form of a function
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α(r, θ) = r cosθ. For the second case, only two types of dynamo regimes were obtained: the steady-

state regime in the region of limited parameter values Rα ∈ [10, 100] and Rem ∈ [100, 1000], for the

remaining values of the parameters the magnetic field attenuated.

An increase in the mass density of external forces fout leads to an increase in the amplitudes of the

modes under consideration, but does not change the dynamo regimes, although in this case the regions

of the parameters Rem, Rα vary for each of the regimes obtained. Variations in the scale factor b
determine the frequency and amplitude of the oscillations and also do not lead to the disappearance

or appearance of new dynamo regimes in the model under consideration.

As a result of the computational experiment for the model (7) the following modes of dynamo

were obtained: lack of inversion, the steady-state regime (fig.1 a), evanescent field (fig.1 b), dynamo

burst (fig.1 c), the steady regime (fig.1 d), in contrast to the work [6], where the algebraic suppression

of oscillations was also realized by using of energy, but another function we used. In the proposed

model, it is possible to reproduce more regimes of dynamo observed in real dynamo-systems, in-

cluding geodynamo. The regimes obtained are of a periodic or quasi-periodic nature, which to a

certain extent depends on the choice of the function Z(t) for algebraic suppression of oscillations.

The regions for each of the dynamo regimes obtained are marked (fig.2) on the phase plane of the

parameters (Rem,Rα).

4 Discussion and conclusions

In the framework of large-scale αΩ-dynamo model with a varying intensity of the α-generator it

is possible to reproduce various dynamo regimes that are observed in real dynamo systems. The

advantage of the proposed model is that the source of regular and quasiregular reversions is its internal

dynamics.

Reversals were obtained in the region bounded by the values of the parameters Rem ∈ [10; 1000],

Rα ∈ [10, 60]. The model is stable to changes in the parameters fout and b, that is, their variations

do not lead to the appearance of new dynamo regimes, but it affects the change in the frequency and

amplitude of the oscillations.

Two variants of specifying the radial part of the scalar parametrization of the α-effect are used.

When the radial part was assigned a linear function in the range of the parameters Rem, Rα, the dynamo

regimes as with inversions were obtained: evanescent field, steady-state output, regular mode, dynamo

burst, and as without inversions.

For the second case, when the radial part of the α-effect was specified by the scalar function

α(r) = −sin(π(r − r1)) the reversions were obtained in the whole considered region, however, only in

two modes damped and stationary.

In the model considered, the appearance of magnetic field reversions against the background of a

constant or slightly varying amplitude of the velocity field (except for the case of a dynamo burst) is

typical, which allows us to consider the change in the velocity field equal to zero in the first equation

of the system (3). Then the amplitude u(t) can be expressed from the first equation of the system (3)

through the amplitudes of the magnetic modes Bi and the four-mode model is converted to a three-

mode model that generates inversions in a magnetic field.
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a b

c d

Figure 1. The dynamo regimes for the case of a radial part α-effect as α(r) = r: a) output steady-state regime

(Rem = 20, Ra = 30), b) the magnetic field with damped oscillations (Rem = 250, Ra = 30), c) dynamo burst

(Rem = 510, Ra = 60), d) the steady regime of the magnetic field (Rem = 100, Ra = 30).
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Figure 2. The nature of the generation of the magnetic field as a function of the values of the parameters Rα
(turbulent dynamo) and Rem (large–scale dynamo). Scalar parametrization of the α-effect as a function α(rθ) =
r cosθ. The white area is the generation of a magnetic field without inversions, the red one – is the generation of

a field with damped oscillations, the blue – is steady–state regime, the grey – is dynamo burst, the green – is the

steady regime.

 
 

/, 02016 (2018) e3sconf/201E3S Web of Conferences 62 8620https://doi.org/10.1051

Solar-Terrestrial Relations and Physics of Earthquake Precursors

2016

7


