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Abstract. The method for calculating the eigenmodes of free damped oscilla-
tions of the geomagnetic field in the Earth’s core using symbolic computations
is described.

1 Introduction

When simulating of geodynamo by spectral methods, the eigenmodes of free damping os-
cillations of the geomagnetic field in the core of the Earth are often useful. These modes
form a complete orthogonal system in the core and can be used as a basis for magnetic field.
However, the calculation of these modes themselves for large values of spherical indices is
a rather complicated computational problem. This paper proposes a method for calculating
modes using systems of symbolic computations (computer algebra systems – CAS) that can
be easily automated.

2 Modes of free decay

The spectral problem of free damped oscillations of the geomagnetic field has the form [1]:

ηB + ∇2B = 0, ∇B = 0, (1)

where η – is eigenvalue. It is closed by the conditions of boundedness of the field in the center
of the core B(0) < ∞, and the continuous transition of a potential external field
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for outer boundary of kernel r = 1.
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It is well-known that solutions of problem (1) finite for r = 0 consist of toroidal and
poloidal eigenmodes [1, 2]:
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k = 0, 1, . . . , n = 1, 2, . . . , m = −n, . . . , n,

(3)

where Ym
n (θ, ϕ) – are spherical harmonics, and

Xkn(r) = akn jn
( √

λknr
)
,

Zkn(r) = bkn jn
(√
µknr

)
.

(4)

In the Eqs. (4) jn(·) – are spherical Bessel functions first kinds, akn and bkn – are normalization
factors, λkn and µkn – are eigenvalues of toroidal and poloidal modes, respectively.

Recall that the spherical Bessel functions are defined for each integer n by the recurrence
relations [3]:

j0(x) =
sin x

x
, j−1(x) =

cos x
x

, jn+1(x) =
2n + 1

x
jn(x) − jn−1(x). (5)

We will assume that the rms norm of Ym
n (θ, ϕ) on a sphere is equal to one, i.e.∫ π

0
sin θ dθ

∫ 2π

0

[
Ym

n (θ, ϕ)
]2 dϕ = 1, (6)

and eigenmodes have a unit rms norm in the volume of the kernel:∫
r≤1

T2
knm(r) dr =

∫
r≤1

P2
knm(r) dr = 1. (7)

Further calculation of the eigenmodes is reduced to finding the normalizing coefficients
and eigenvalues for the functions (4).

3 Function Xkn(r) parameter calculation

For toroidal eigenmodes, the conditions of continuous transition for r = 1 lead to the condi-
tion Xkn(1) = 0. We obtain the equation for eigenvalues λ:

jn(
√
λ) = 0. (8)

For every n, this equation has a countable set of solutions λkn.
The solutions is easy to localize, but their calculation using standard double-precision

floating-point numbers results in computational instability at n & 30. Most likely this is due
to deep recursion in the (5) and the accumulation of computational errors. One possible way –
the use of arbitrary-precision arithmetic. Such capabilities are provided by CAS.

After calculating the eigenvalue λkn, you can determine the normalization factor akn.
Substitute expression (3) in to normalization condition (7) for the toroidal field and integrate
over the sphere. Then get the normalization condition for the function Xkn(r):

n(n + 1)
∫ 1

0

[
akn jn

( √
λknr

)]2
r2 dr = 1, (9)
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Figure 1. Radial function Xkn(r) of toroidal eigenmode Tknm.

where we can determine akn.
However, as can be seen from Eqs. (4,5), this is an improper integral of the 2nd kind with

a singularity at r = 0. Given a very complex integrand, the computation of such an integral
by numerical methods is almost impossible. The calculations lead to the occurrence of an
overflow.

At the same time, the integral can be calculated analytically, but this is a very cumber-
some procedure, the execution of which manually will inevitably lead to errors. You can
avoid these errors and complex calculations if you use CAS. The system must be entrusted
with calculating the integral with undefined parameters. Then the numerical values of the
parameters are substituted into the algebraic expression formed by CAS.

According to this scheme, we calculated the values of the parameters for n = 1, 2, . . . , 50
and k = 0, 1, . . . , 49. Fig. 1 shows the graphs of functions Xkn(r) for n = 10 and k = 0, . . . , 5.

It can be seen that the number of zeros of the function Xkn(r) on the interval (0; 1) coin-
cides with the value of the index k. This indirectly confirms the correctness of our calcula-
tions.

4 Function Zkn(r) parameters calculation

We work in a similar way with poloidal modes, although here the calculations are more
complicated.

The conditions of continuous transition for r = 1 lead to the condition[
dZ(r)

dr
+ (n + 1)

Z(r)
r

]
r=1

= 0. (10)

Then, using the well-known relation for spherical Bessel functions [3]:

d jn(x)
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=
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jn(x) − jn+1(x), (11)

we obtain the equation for eigenvalues µ:[(
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)
jn(
√
µr)

]
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= 2(n + 1) jn(
√
µ) −
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√
µ) = 0. (12)

This equation has a countable set of solutions µkn for every n.
As in the case of toroidal modes, for large n, calculations of arbitrary-precision arithmetic

are needed.
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Figure 2. Radial function Xkn(r) of poloidal eigenmode Tknm.

After calculating the eigenvalue µkn, you can determine the normalization factor bkn.
Substitute expression (3) in to normalization condition (7) for the poloidal field and integrate
over the sphere. Then get the normalization condition for the function Zkn(r):

n2(n + 1)2
∫ 1

0

[
bkn jn
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µknr

)]2 dr + n(n + 1)
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r2 dr = 1. (13)

It is clearly seen that this integral is even more complicated than (9). Calculate it using
CAS.

According to this scheme, we calculated the values of the parameters for n = 1, 2, . . . , 50
and k = 0, 1, . . . , 49. Fig. 2 shows the graphs of functions Xkn(r) for n = 10 and k = 0, . . . , 5,
and shows the continuously differentiable transition into radial functions of a potential ex-
ternal field. This transition of radial functions provides continuous transition of magnetic
modes. It can be seen that the number of zeros of the function Zkn(r) on the interval (0; 1)
coincides with the value of the index k. This indirectly confirms the correctness of our calcu-
lations.

We note that Eqs. (3) and (11) imply the coincidence of the eigenvalues of the modes Tk,n

and Pk,n+1 . These eigenvalues were calculated by us independently of each other separately
for each group of modes. The results gave the required match. This confirms the correctness
of the calculations.

5 Conclusion

A method has been developed for calculating the parameters (eigenvalues and normalization
coefficients) of eigenmodes for the free decay of the geomagnetic field for large values of
spherical and radial indices. Calculations are carried out using analytical integration and
arbitrary-precision calculations in a computer algebra system. This technique is implemented
as programs in the CAS Maple system, which allows you to automate calculations.
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