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Abstract. In recent years, probabilistic forecasts techniques were proposed in research as well as in 
applications to integrate volatile renewable energy resources into the electrical grid. These techniques allow 
decision makers to take the uncertainty of the prediction into account and, therefore, to devise optimal 
decisions, e.g., related to costs and risks in the electrical grid.  However, it was yet not studied how the input, 
such as numerical weather predictions, affects the model output of forecasting models in detail. Therefore, 
we examine the potential influences with techniques from the field of sensitivity analysis on three different 
black-box models to obtain insights into differences and similarities of these probabilistic models. The 
analysis shows a considerable number of potential influences in those models depending on, e.g., the 
predicted probability and the type of model. These effects motivate the need to take various influences into 
account when models are tested, analyzed, or compared. Nevertheless, results of the sensitivity analysis will 
allow us to select a model with advantages in the practical application. 

1 Introduction 
In past years, renewable energy resources have become a 
fundamental part of the electrical power supply in many 
countries. In Germany, e.g., renewable resources 
contribute up to 29 percent to the energy mix [1]. A 
conventional approach to integrate those volatile 
resources into current grids is to use numerical weather 
prediction (NWP) data and historical power data as 
training data for deterministic machine learning models 
that generate day-ahead forecasts. Here, we call these 
models deterministic because their output is a point 
estimate of the future power production.  

Recently, probabilistic forecasts can be seen in 
research as well as in applications [2]. Probabilistic 
methods forecast distribution of wind power rather than 
delivering a point forecast of the expected power.  
Probabilistic forecasts (PF) have, in comparison to 
deterministic approaches, the advantage that power plant 
operators, grid operators, and energy traders can examine 
the risk of their day-ahead forecasts. These probabilistic 
forecasts help decision makers to devise optimal 
decisions considering the uncertainty of the prediction, 
mainly caused by the NWP [3]. 

However, even though many studies investigate 
influences and interactions of input features on the output 
of deterministic forecasts, e.g., [4]–[9], there has been 
little interest in conducting studies that are designed to 
evaluate influences in probabilistic forecasts. This article 
examines influences of features on the output of three 
different probabilistic wind power forecasting models 
with a focus on NWP data and technical features (e.g., 
maximum diameter and maximum power generation of a 

wind turbine) as input (which is typical for day-ahead 
forecasts). Therefore, we investigate these potential 
influences with methods from the field of sensitivity 
analysis regarding the three models as black-boxes.  

This analysis allows us to point out a considerable 
number of potential influences in probabilistic forecasts. 
Influences are, e.g., the forecasting model, the predicted 
quantile, as well as selected input features. That is, the 
causes of forecasts errors might be various. Therefore, we 
need to take several influences into account when models 
are tested, analyzed, and compared or simultaneously 
used within an application. In the end, results of the 
analysis lead us to a gray-box model, where we have 
partial knowledge about the internal behavior of the 
forecasting model. This knowledge will allow us to select 
a model with advantages in the practical application. 

The remainder of this article is structured as follows. 
First, we give details on related work in Section 2. We 
continue with explanations on probabilistic forecasts and 
sensitivity analysis in Section 3. Then the experiment is 
presented in Section 4. Section 5 summarizes and 
concludes our work. 

2 Related work 
Determining influences in forecasting models are an 
essential research topic in renewable resources. On the 
one hand, findings can help to improve the forecasting 
accuracy. On the other hand, insights help decision 
makers to understand their forecasting model. By 
understanding the relationship between input and output, 
it is, e.g., possible to determine potential causes of a 
forecasting error.  
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The most common methodology to analyze the 
influences on the output of the deterministic forecasts 
model is sensitivity analysis. Sensitivity analysis is, e.g., 
used in deterministic forecasts for investment calculation 
[10]. In [4], the authors use sensitivity analysis to proof 
the feasibility to integrate wind power generators into the 
Brazilian electricity market. Another application of 
sensitivity analysis shows the profitability and 
vulnerability of renewable energy resources [7]. In [5],
sensitivity analysis is used to examine influences of 
features for the placement of floating offshore wind 
farms for future investments. It is also possible to 
develop a framework to examine and evaluate features 
that allow the assessment of potential locations for new 
wind or solar parks as shown in [6]. The authors of [8] 
use sensitivity analysis and swarm optimization to obtain 
the best placement of wind turbines in wind parks [8]. In 
[9], sensitivity analysis is used to show that weather data 
has a higher impact than technical features in wind power 
time series modeling. However, to our knowledge there is 
no article that attempts to apply sensitivity analysis to the 
analysis of models used for probabilistic (wind power) 
forecasting. 

3 Methodology 
In this section, we give a brief introduction into 
probabilistic forecasts and sensitivity analysis.

3.1 Probabilistic wind power forecasts 

In this section, we focus on the background of probabilis-
tic models, necessary to apply sensitivity analysis later.  
Probabilistic methods forecast distribution of wind power 
rather than delivering a point forecast of the expected 
power. By predicting, e.g., a cumulative distribution 
function (CDF), we obtain additional information about 
the uncertainty of our model. Uncertainties arise, e.g., 
due to the influence of the uncertain NWP based model 
inputs.

Typically, to predict those distributions one either 
uses parametric or non-parametric methods. Non-
parametric methods have the benefit that they do not 
require assumptions about the mathematical form of the 
distribution of wind power. Three non-parametric models 
will be used in this article to forecast the wind power 
distribution. In particular, the techniques monotone 
quantile regression neural network (MQRNN), support 
vector regression (SVR) and, gradient boosting 
regression tree (GBRT) are used. For details, please refer 
to [11]–[14]. 

Each of the three approaches is considered as a black-
box method to forecast an empirical cumulative 
distribution function (ECDF). In contrast to a CDF, the 
ECDF is co posed of several quantiles and it is linearly 
interpolated between the respective quantile estimates.   

3.2 Sensitivity analysis 

Sensitivity analysis (SA) typically decomposes the 
uncertainty of a single (deterministic) output to different 

sources of uncertainty in the input [10]. However, we are 
interested in applying SA to the predicted ECDF from 
three black-box models and not to a deterministic output 
(i.e., point estimate). Therefore, for each predicted 
quantile SA needs to be applied. Each quantile can be 
regarded as a single predicted output of the ECDF. This 
utilization allows us to evaluate each quantile 
individually without adapting the method itself. In this 
sense, by applying SA to each quantile, we examine how 
individual quantiles are influenced differently by the 
input. Further on, by comparing the results for different 
quantiles, we can study how these influences are related.
For better understanding, we will limit the following 
explanations to a single output. 

One standard SA method to examine influences and 
interactions of inputs is the variance based decomposition 
(VBD) [10]. VBD uses Monte Carlo simulation to
decompose the variance of the output �(�)  w.r.t. the 
input. VBD, therefore, distinguishes between a first- and 
a total-order sensitivity index given by the following 
formulas:  

�� =  �[�(�|	
 )]

�(�)
, (1) 

��
 =  �[
(�|�~�)]

�(�)
 , (2) 

  
where ��  is the first-order sensitivity index and ��


 the 
total-order sensitivity index. S� can be interpreted as the 
degree of influence of feature i on the output. The first-
order sensitivity index is the relation between the vari-
ance, �[�(�|�� )], in the output that is explained by fea-
ture i alone and the variance in the output. 

��
  is the first-order index of feature � plus all higher-
order interactions of this feature, e.g., the effect of wind 
speed alone plus the effect together with air pressure. 
More precise, in the field of SA, the interaction is defined 
as the effect that cannot be explained by a single effect 
alone [10]. �~�  indicates all possible combination of 
other features with feature �. For further details refer to 
[10], [15]. 

Note that a notable difference between ��  and 
��
 indicates strong interactions between features that 
affect the output together. 

4 Experimental results 
This section investigates the influences of three 
probabilistic wind power forecasting models, their input 
features, and the predicted quantiles with sensitivity 
analysis in three use cases. The SA of one use case along 
with one forecasting model is called scenario for 
convenience. First, we give our definition of the three use 
cases. Second, we explain the manual feature engineering 
and the preselection of features. This set of selected 
features allows us to get proper evaluations results of all 
three black-box models as detailed in the next section. 
The evaluation results are critical to assure that the 
forecasts of the wind power distribution are reasonable. 
Finally, we apply SA and get valid results that are 
summarized and discussed in the final sections. 
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4.1 Definition of use cases 

To examine the relation between input and output in
probabilistic wind power generation, we evaluate three 
different use cases. The evaluation of the different use 
cases helps to distinguish different influences of the 
terrain and the relation as modeled by the respective PF 
model. Similar to other studies of wind power forecast 
models, see, e.g. [3], we define the following use cases:
� Wind parks located in non-complex terrain (NCT) 

between 200 and 1500 meters above sea level (e.g., 
farmland).  

� Wind parks located in complex terrain (CT) between 
200 and 1500 meters above sea level (e.g., forest).  

� Offshore (OS) wind parks located on the ocean. 
Thee definitions allow us to evaluate 11 NCT, eight 

CT and four OS wind parks located in Germany from our 
data. 

4.2 Feature engineering and pre-selection of 
input data 

This section details how we manually engineered features 
and use feature selection to devise an optimal set of 
features. This set of features allows us to have reasonable 
forecast results in each scenario (summarized in the next 
section). All wind parks of the use cases have a resolution 
of one hour from 2015-01-01 to 2016-12-31. Initially, the 
data has the following properties: 
� NWP features: Air pressure (AP), humidity (H), wind 

direction zonal (WDZ100m) at 100m, wind direction 
meridional (WDM100m) at 100m, wind speed 
(WS10m) at 10m, and wind speed (WS100m) at
100m above ground. 

� Meta features: Maximum power generation, maxi-
mum diameter, maximum hub height, and elevation 
of the wind park. 

� Normalization: Min-max normalization is applied to 
all NWP features initially. Respectively, derived fea-
tures are normalized as well. The generated power is 
normalized with the maximum power generation.  

� From the NWP features we derive variability (V)
features. Variability is defined with V =
��(� + �) − �(�)����������������������. This derived feature indicates the 
mean amount of change of a feature � within a time 
horizon � [16], e.g. of the previous (P) hour. For �
we used hour (HR), day (D), week (W), month (M),
and year (Y). Note that, e.g., the variability of wind 
speed at 100 meters in the previous hour is abbrevi-
ated with VWS100mPHR. 

� We add features for the day, the week, the month of 
the year, and hours since last model run (HSMR) of
the NWP to cover, e.g., trends and seasonal effects.  

Afterward, the data is split into 80% training (January 
2015 to July 2016) and 20% test data-set (August 2016 to 
December 2016). This data setup is used to pre-select 
features for each use case on the training data.

We use a combination of sequential forward selection 
(SFS) and two filters (Minimum Redundancy Maximum 
Relevance and Fisher Score [17]). SFS selects the ten 

most prominent features with GBRT and so-called 
continuous ranked probability score (CRPS) as selection 
criterion [18]–[20]. For the sake of this article, one can 
imagine the CRPS as the mean absolute error from 
deterministic forecasts. In parallel, we require that results 
of the SFS to be in the top ten ranked features from one 
of the filters.  

This selection strategy improves the CRPS by a 
minimum of 1.6 percent and a maximum of 12 percent 
compared to filter or wrapper feature selection methods. 
However, the detailed evaluation is out of scope for this 
article.  

4.3 Probabilistic models analyzed by sensitivity 
analysis 

The configuration of the models can be summarized as 
follows: 
� The quantiles 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

and 0.9 are used and analyzed in all scenarios. 
� Input features for the scenario depends on the se-

lected feature for the respective use case.  
� All three models are trained and optimized with 

standard parameters on the train and validation data 
sets. 

For the SA detailed evaluation of the error score is not 
relevant. However, it may be relevant to know that they 
achieved reasonable results. GBRT achieved the smallest 
average CRPS (0.061) and standard deviation (0.019).
MQRNN has the second smallest mean (0.07) and 
standard deviation of the mean (0.025). SVR has the 
largest standard deviation (0.027) and average CRPS 
(0.073). 

4.4 Sensitivity analysis

The following section summarizes results of the SA. In 
each use case, the same features are used; those features 
are selected beforehand by the feature selection strategy 
as described above to take the specifics of the terrain into 
account. The models trained on this data (for each 
scenario) are evaluated here with SA. 

For all scenarios, the VBD sensitivity analysis is 
applied to each quantile separately. The Monte Carlo 
simulation uses 10.000 sample points. Within a use case, 
the same sample points are used for all models and 
quantiles.  

Figure 1 shows three examples of the average 
quantile first-order index. By averaging the first-order 
index (of the same quantile) for all wind parks in a 
scenario, we obtain the average influence of features for a 
quantile in this scenario. The three machine learning 
examples are representative concerning the relation of 
quantiles. It shows, e.g., how an increase of �� for
WS100m for different quantiles is related to a decrease of 
�� for WS10m (see, e.g., Figure 1a). 

Table 1 shows the average �� and ��
  across all 
quantiles and wind parks within a scenario. In contrast to 
the average of Figure 1, the first-order or total-order is 
additionally averaged for all quantiles. This allows 
obtaining a single value that is representative of the 
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scenario. The difference between these average �� and ��

,

is used to examine the amount of interaction of features 
given by an increase between the first and total-order 
index.  As mentioned before, in the field of SA 
interactions are defined as the effect on the output which 

cannot be explained by a single feature. The higher the 
increase from the average �� to the ��
 , the larger is the 
amount of interaction of the feature with other features 
that affect the output together.  

Fig. 1. The figure shows three representative examples of the individual influences of features on the output of the respective model.
For each forecasted quantile Eq. 1 is applied in the following three scenarios, from left to right: (a) GBRT offshore scenario, (b) 
MCQRNN forest, and (c) SVR flatland. 

Table 1. Results of the averaged first- and total-order sensitivity index  ��  and �� for the selected features for each scenario are 
shown. For each scenario, the sensitivity index is color-coded with green being the highest and red the smallest value. The relevant 
features are enumerated on the left in the following order AP (1), HSMR (2), H (3), T (4), VWS100mPHR (5), VWS10mPHR (6), 
WDM100m (7), WDZ100m (8), WS100m (9), and WS10m (10). The dashed line indicates that the specific feature is not selected in 
the scenario.  

Observations related to features: 
� As expected, WS100m is the essential feature in all 

evaluated scenarios. Similar, in most cases WS10m 
has the second largest total-order index.  

� If selected, AP and VWS100mPHR have about the 
third largest total-order sensitivity index for all sce-
narios. 

Observations related to PF models: 
� The average total-order sensitivity index of 

GBRT MQRNN SVR 
OS NCT CT OS NCT CT OS NCT CT

1 - - 0.02 0.04 0.02 0.04 - - 0.02 0.23 0.02 0.14 - - 0.01 0.23 0.03 0.26
2 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.08 0.00 0.07 0.00 0.05 0.03 0.31 0.03 0.30 0.02 0.28
3 - - 0.01 0.03 0.00 0.01 - - 0.01 0.14 0.00 0.10 - - 0.03 0.30 0.02 0.25
4 - - - - 0.01 0.03 - - - - 0.01 0.13 - - - - 0.02 0.24
5 0.01 0.03 0.02 0.03 - - 0.04 0.41 0.01 0.21 - - 0.02 0.22 0.03 0.22 - -
6 0.01 0.03 - - - - 0.03 0.38 - - - - 0.04 0.25 - - - -
7 - - 0.00 0.01 0.00 0.01 - - 0.01 0.12 0.00 0.08 - - 0.06 0.33 0.05 0.29
8 - - 0.00 0.01 0.01 0.03 - - 0.01 0.13 0.01 0.08 - - 0.05 0.35 0.05 0.31
9 0.68 0.82 0.82 0.89 0.86 0.91 0.32 0.68 0.49 0.73 0.69 0.84 0.23 0.53 0.17 0.47 0.18 0.49
10 0.09 0.19 0.04 0.07 0.02 0.03 0.07 0.41 0.06 0.27 0.02 0.16 0.10 0.39 0.08 0.35 0.10 0.37

�� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� 
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Fig. 1. The figure shows three representative examples of the 
individual influences of features on the output of the respective 
model. For each forecasted quantile Eq. 1 is applied in the 
following three scenarios, from left to right: (a) GBRT offshore 
scenario, (b) MCQRNN forest, and (c) SVR flatland. 

Table 1. Results of the averaged first- and total-order sensitivity 
index  ��  and �� for the selected features for each scenario are 
shown. For each scenario, the sensitivity index is color-coded 
with green being the highest and red the smallest value. The 
relevant features are enumerated on the left in the following 
order AP (1), HSMR (2), H (3), T (4), VWS100mPHR (5), 
VWS10mPHR (6), WDM100m (7), WDZ100m (8), WS100m 
(9), and WS10m (10). The dashed line indicates that the specific 
feature is not selected in the scenario.  
�  for GBRT is small for most features except 

WS100m and WS10m. In contrast, the values for 
SVR and MQRNN are more spread among all fea-
tures. The results for GBRT are potentially caused 
by the ensemble of weak predictors. The combina-
tion of those predictors allows the GBRT to achieve 
the best forecast results without substantial interac-
tion with other features compared to SVR and 
MQRNN. For SVR one can assume that the worst 
evaluation result is related to the extensive amount 
interactions between all features. These interactions 
potentially cause too much variability in the output 
and yield to the worst evaluations results. MQRNN 
is somewhat in the middle of the evaluation score 
and the interactions of features. Potentially, the in-
ternal data transformation by the MQRNN allows the 
model to capture interactions of features and keep 
the variance in the output to a minimum at the same 
time. Respectively, this data transformation allows 
MQRNN to achieve better results than the SVR. 

� SA shows that influences of features are about the 
same for identical types of PF methods across differ-
ent use cases. This observation indicates that the in-
ternal structures of the black-box models are more 
affected by the underlying model than by the data. 

Observations related to quantiles: 
� For similar PF model, the relation of the first and 

total-order index for different quantiles are about the 
same for all use cases. E.g., the initial decrease be-
tween the 0.1 and 0.4 quantile in  Figure 1c is similar 
in all SVR scenarios. This observation further moti-

vates that the relationship between input and output 
is largely depending on the underlying PF model and 
not the specifics of the input data. 

� SA shows that for SVR and GBRT the amount of 
influence is dependent on the quantile of the predict-

ed ECDF.  

4.5 Discussion 

Interestingly, SA shows that influences and interactions 
of features mostly depend on the underlying model. This 
result partly surprises, because in existing studies of the 
uncertainty, the forecast error is seen as being largely 
dependent on the terrain, see, e.g. [3]. Therefore, studies 
of the uncertainty, as in [21], would probably benefit 
substantially from SA to understand further causes of the 
error. On the other hand, it might also be related use case 
specific selection of the input features.  
The individual values (for each PF model) of the sensitiv-
ity indexes for different quantiles suggest that it is bene-
ficial to select individual models for different purposes. 
GBRT, e.g., could be used in a non-complex terrain, to 
derive a simple model only depending on WS10m and 
WS100m. 

Finally, it seems beneficial to select the model where 
the influences and the relationship of influences in 
different quantiles fit our needs. MQRNN, e.g., could be 
used for probabilistic simulations of the electrical grid for 
load flow calculations of future energy systems. MQRNN 
would limit the number of potential influences for 
different quantiles to provide the simplest possible model 
for the simulation. 

5 Conclusion and future work 
In this article, we proposed a simple method to apply SA 
to ECDF, predicted by PF models, by applying SA to 
each quantile estimate individually.  

By applying the SA to three PF methods and for data 
of 28 wind parks within three use cases we moved from a 
black-box to a gray-box probabilistic forecasting model.  

We show that influences on quantile estimates and the 
relationship of those influences for different quantiles 
depends on the underlying PF model. Further on, we 
show that influences are more similar for equal PF 

GBRT MQRNN SVR 
OS NCT CT OS NCT CT OS NCT CT

1 - - 0.02 0.04 0.02 0.04 - - 0.02 0.23 0.02 0.14 - - 0.01 0.23 0.03 0.26
2 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.08 0.00 0.07 0.00 0.05 0.03 0.31 0.03 0.30 0.02 0.28
3 - - 0.01 0.03 0.00 0.01 - - 0.01 0.14 0.00 0.10 - - 0.03 0.30 0.02 0.25
4 - - - - 0.01 0.03 - - - - 0.01 0.13 - - - - 0.02 0.24
5 0.01 0.03 0.02 0.03 - - 0.04 0.41 0.01 0.21 - - 0.02 0.22 0.03 0.22 - -
6 0.01 0.03 - - - - 0.03 0.38 - - - - 0.04 0.25 - - - -
7 - - 0.00 0.01 0.00 0.01 - - 0.01 0.12 0.00 0.08 - - 0.06 0.33 0.05 0.29
8 - - 0.00 0.01 0.01 0.03 - - 0.01 0.13 0.01 0.08 - - 0.05 0.35 0.05 0.31
9 0.68 0.82 0.82 0.89 0.86 0.91 0.32 0.68 0.49 0.73 0.69 0.84 0.23 0.53 0.17 0.47 0.18 0.49
10 0.09 0.19 0.04 0.07 0.02 0.03 0.07 0.41 0.06 0.27 0.02 0.16 0.10 0.39 0.08 0.35 0.10 0.37

�� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� 
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models in different use cases than they are for different 
PF models applied to the same use case. The similarity is 
either related to the pre-selection of input features 
(specific to the use case) or the internal behavior between 
input and output modeled by the PF technique. The 
observed similarity could, e.g., analyzed further by using 
the same input features for all use cases in the future. 

In our future work, we also aim to investigate the 
differences between model types further. Primarily, we 
are interested in analysis distinct types of so-called multi-
task (MQRNN) approaches such as hard and soft 
parameter sharing. 
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