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Abstract. As more renewable energy sources are connected to the electrical grid, it has become important 
that these sources participate in providing system support. It has become needful for grid-connected solar 
photovoltaics to participate in support functions like frequency support. However, photovoltaic systems 
need to implement a maximum power tracking algorithm to operate at maximum power and a method for 
de-loading photovoltaic systems is necessary for participation in frequency support. Some conventional 
maximum power tracking techniques are implemented in real time and will not adjust their output fast 
enough to provide system support while other may respond fast but are not very efficient in tracking the 
maximum power point of a photovoltaic system. This paper presents an offline method to estimate the 
maximum power voltage and current based on the characteristics of the photovoltaics module available in 
the datasheet and using the estimated values to operate the photovoltaics at maximum power. The 
performance of this technique is compared to the conventional technique. This paper also describes how the 
photovoltaic system can be de-loaded.  

1 Introduction 
Power in electrical systems is increasingly supplied from 

diverse generation sources. As sources such as 

photovoltaics gain a larger share of power generation 

and replace conventional generators, the inertia of power 

systems will be reduced. The could lead to a high rate of 

change of frequency when there is a difference in 

generation and demand [1]. This problem is exacerbated 

in island systems where there are very few generators 

and high renewable energy penetration because they 

have reduced inertia and variability in power generation 

which could lead to more frequency deviation events [2]. 

As a result of this, it has become important for different 

kinds of generation sources to participate in frequency 

support if more renewable generation is to be added to 

electrical grids.  

Wind turbines have been demonstrated to contribute 

to frequency support by providing inertia support and 

providing primary frequency support similar to the 

support obtainable from conventional power plants in [3] 

and [4]. Energy storage systems have also been shown to 

provide frequency support. In [5], flywheel energy 

storage system is shown to provide frequency support. 

Battery storage systems can also be used to provide 

frequency support as shown in [6]. This is because they 

are fast-acting and can increase active power supply in 

the time-scale of inertia response.  

Like battery storage systems, PV systems can support 

grid frequency with the appropriate control and 

operation method. However, PV systems require a 

maximum power point tracking method. Common 

methods used for operating PV at maximum power 

include perturb and observe, incremental conductance 

and fractional open-circuit voltage [7]. These methods 

are not suitable for systems required to provide 

frequency support because they either require significant 

computation which makes them slower or are fast but 

lead to significant power losses. 

Various methods for estimating PV power have been 

proposed in [8] and [9]. [8] uses artificial neural network 

but this will require historical information on the 

performance of the PV system and the method used in 

[9] will require some real-time calculation to estimate 

maximum power. This paper proposes a method to 

operate the PV systems at maximum power by obtaining 

the maximum power voltage from the PV current-

voltage (I-V) curve for the entire operating range of the 

PV module using the characteristics of the PV module 

from the PV datasheet. 

Section 2 describes the effect of temperature and 

irradiance on the open-circuit voltage (VOC) and short-

circuit (ISC) and how VOC and ISC can be estimated for 

any combination of temperature and irradiance. Section 

3 describes how the maximum power voltage and current 

can be calculated from the I-V curve and how the PV 

system can be operated at the desired de-loading level. 

Section 4 presents the operation of the proposed method 

and compares the result with operation using incremental 

conductance.  

2 Estimating VOC and ISC  

2.1 Effect of Changing Irradiance 
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The ISC current varies directly with the irradiance up to 
very high levels of irradiance [10]. This is because the 
generated photocurrent is a direct result of the amount of 
available sunlight. This implies that for any given 
temperature, the ISC can be readily determined. The ISC
current at standard testing condition (STC) is available in 
the datasheet. The VOC is also affected - to a lesser extent 
-by changing irradiance. The VOC changes 
logarithmically to the irradiance. Figure 1 shows the I-V
at different irradiances and constant temperature. 

Fig. 1.Effect of Changing Irradiance on VOC and ISC

2.2 Effect of changing temperature 

A change in temperature results in a change in both the 

VOC and ISC. As temperature increases, the ISC increases 

while the VOC reduces. This results in 

 an overall loss of efficiency with increasing 

temperature. This is because the increase in temperature 

leads to an increase in the bandgap of the semiconductor 

which leads to an increase in the ISC [11]. VOC reduces 

with an increase in temperature because of the increase 

in the dark current density [11].  

The effect of temperature on VOC and ISC is defined 

by the temperature coefficient of the PV module and is 

provided by the manufacturer in the module datasheet. 

Figure 2 shows the effect of changing temperature on the 

I-V curve of the PV module. 

 

 
Fig. 2.Effect of Changing Temperature on VOC and ISC

2.3 Effect of series and shunt resistances  

The series and shunt resistances of the PV module/cell 

make up the parasitic resistances. They reduce the 

efficiency of solar cells. The series resistance is as a 

result of the resistance of the electrical contact of the cell 

[12]. The series resistance does not affect the VOC except 

at high values. The effect of the series resistance can be 

discounted in estimating VOC.  

The shunt or parallel resistance is as a result of 

leakage current from the side of the cell which leads to 

loss of power and should be as high as possible to reduce 

losses [12]. The shunt resistance has no significant effect 

in measuring VOC and ISC. The parasitic resistances result 

in a shift in the maximum power point and must be 

considered in obtaining the I-V curve.  

Figure 3 below shows the I-V curve of a Trina Solar 

TSM310PD14 cell with the series and shunt (parasitic) 

resistances and without the series and shunt resistances. 

The VOC and ISC changed very little but there is a 

significant shift in the maximum power point. The 

maximum power voltage dropped from 0.5536V without 

the parasitic resistances to 0.5033V with the parasitic 

resistances while the maximum power current dropped 

from 8.4533A to 8.3256A. This presence of the parasitic 

resistances resulted in a maximum power loss of 

0.4895W which is about 10% of the power without the 

parasitic resistances. The shunt and series resistances are 

not given in the module datasheet but can be calculated 

using the method described in [13]. 

Fig.3. I-V curve of TSM310PD14 at STC with and without 
Parasitic Resistances

3 Obtaining the I-V curves  
The first step in obtaining the I-V curves is to determine 

the ISC and VOC for all values of temperature and 

irradiance. This is done by extrapolation of the I-V curve 

at standard testing condition (STC) using the effect of 

changing irradiance and temperature on ISC and VOC.  

Two tables are generated for the VOC and ISC. The 

range of irradiance considered is from 0-1700w/m2 in 

intervals of 50w/m2 while the range of temperature 

considered is from -40�C to 85�C in intervals of one. 

The PV module used is the Trina Solar TSM-310PD14. 

3.1 Calculating VOC

 The Effect of temperature on VOC is given by the 

temperature coefficient which is given in the module 

datasheet. At a given the irradiance, VOC is given by 

equation 1. 

                           VOC (t) = VOC (STC) +� (t-25)  (1) 
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Where � is the temperature coefficient of the open-

circuit voltage and t is temperature. To determine the 

VOC for any irradiance (I) at a given temperature, 

equation 2 is used.  

��� = ���� ln 	
��� + 1�                 (2) 

Where m is the diode ideality factor, kB is the Boltzmann 

constant, J0 is the diode saturation current and T is the 

temperature in Kelvin. To obtain the VOC voltage for any 

combination of irradiance and temperature, equation 1 

and 2 are combined resulting in equation 3. Equation 3 

gives the VOC for any temperature and irradiance 

combination.  

    ���(�, �) = ���� ln 	
��(
,�)�
+ 1� + �(� − 25)  (3) 

3.2 Calculating ISC  

The ISC should be calculated first because it is needed in 

equation 3 to calculate the VOC.  ISC varies linearly with 

the irradiance for any given temperature. The ISC for a 

given irradiance at any temperature is given in equation 

4. 

                         ISC (t) = ISC (STC) +� (t-25)  (4) 

Where � is the temperature coefficient of the short-

circuit current. To obtain the ISC for any combination of 

temperature and irradiance, the ISC at STC have to first 

be adjusted for the irradiance and then adjusted for the 

difference in temperature from 25�C. Equation 5 can be 

used to calculate the short-circuit current for any 

temperature and irradiance. 

             ���(�, �) = 

���� × ���(���) + �(� − 25)  (5) 

3.3 Calculating maximum power voltage/current  

To determine the maximum power point at any 

irradiance and temperature, the I-V and P-V curves need 

to be obtained. PV cell can be modelled as a current 

source connected in parallel to a diode and the shunt 

resistance (RSH) and in series to the series resistance 

(RS). The five parameter model of a PV cell is given in 

figure 4. 

Fig. 4. Five parameter model of a solar cell

The I-V curve can be obtained by solving for the 

current in the terminal of the module. The current from 

PV module is given by equation 6. 

      � = ��� − �����(�� �)/!� − 1" − �# �
 �$

  (6) 

Where i is the current across the terminals of the PV, RSH 

is the shunt/parallel resistance, RS is the series resistance, 

V is the voltage and q is the electric charge.  

The I-V curve can be obtained by solving the 

equation 6. The voltage should be taken in small steps 

from 0 to VOC and the current computed to obtain the I-V 

curve. The step should be as small as possible as the 

maximum power point is usually around the end of the 

curve. This will increase the accuracy of the curve. 

However, equation 6 is an implicit equation and have to 

be solved numerically.  For every voltage from 0-VOC, 

the value of current which satisfies the equation is 

determined numerically. This was done using the fzero 

function in Matlab. Figure 5 shows the I-V curve at 

different points using the described method.  

Fig. 5.Calculated IV curves
 

The maximum power point can be determined by 

plotting the graph of voltage against power. It is the 

highest point in the PV graph. Table 1 shows the 

maximum power voltage of one module of Trina Solar 

TSM 310 PD14 at different temperature and irradiance 

using the described process. 

Table 1: Calculated maximum power voltages 

Irradiance -20�C 25�C 45�C 65�C 

500 42.12 36.4 33.72 31.13 

1000 42.04 36.8 33.4 30.3 

1500 41.41 36.2 33.15 30.61 

1700 41.63 35.4 32.25 29.78 

4 Operating PV system at maximum 
power  
To test the proposed method, a PV system was modelled 
in Simulink. The maximum power points at different 
operating conditions are calculated and stored in a 
lookup table. Because of the number of possible 
combinations of temperature and irradiance, it is 
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important that only a manageable number of power 
points are calculated for. For any irradiance and 
temperature value not stored in the lookup table, the 
closest approximation should be used.  

For any combination of temperature and irradiance, 
the lookup table will give the maximum power voltage 
as the reference voltage. The reference voltage will then 
be used to obtain the duty cycle which will be the input 
of the DC-DC converter. The operation of the system is 
shown in figure 6 below. 

Fig. 6.Offline MPPT Implementation

Fig. 7. Offline MPPT (1000w/m2 50°C) 

Fig.8. Incremental conductance (1000w/m2, 50°C)

The performance of the offline method is compared 
to the performance of the system using incremental 
conductance. In figure 7, the PV system is using the 
offline maximum power point tracking while in figure 8, 
the PV system is using incremental conductance 
maximum power point tracking technique. The time 
taken to reach maximum power by the PV system using 
the proposed offline method is about 100ms while the 
time taken to reach maximum power using incremental 
conductance is about 700ms. 

The system can be de-loaded by storing a percentage 
of the maximum power voltage in the lookup table as the 
reference voltage. This implies that if the system is 
required to operate with a 10% reserve the maximum 
power voltage will be multiplied by 0.9 before being 
stored in the look-up table. This is because the voltage is 
approximately directly proportional to the power up to 
the maximum power point. The system can also be de-
loaded by operating it higher than the maximum power 
voltage but it is more difficult to get it to operate at the 
desired percentage of maximum power because the 
power drops steeply after the maximum power point. 

This method depends on the behaviour of the PV 
module and as a result, the accuracy of the system is 
affected by degradation of the PV module. This can be 
factored into the calculation of the maximum power 
voltage.   

5 Conclusion 
This paper describes and tests a fast and accurate method 
for operating PV systems at maximum power or at 
maximum power with a predetermined reserve. The VOC
and ISC are first determined using the temperature 
coefficients of the PV module and the effects of 
changing irradiance on the PV. Then the maximum 
power is determined by obtaining the I-V curve. The 
points of the I-V curve are obtained by numerically 
solving the diode equation. This maximum power 
voltage is stored in a lookup table and is the reference 
voltage for a given irradiance and temperature. The 
implementation of the offline method shows that the 
system reaches maximum power quickly and is faster 
than when incremental conductance is used. This main 
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advantage of this method is the speed at which the 
reference voltage is determined. The method presented 
in this work will find application in the use of converter 
connected sources such as PV and grid-scale batteries in 
providing frequency support and thus will enable more 
converter connected sources in electrical grids.  
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