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Abstract. This paper has adopted six daily climate variables for the eleven major locations, and heavily 
populated areas in Queensland, Australia obtained from Scientific Information for Land Owners (SILO) to 
forecast the daily electricity demand (G) obtained from the Australian Energy Market Operator (AEMO). 
Optimal data-driven technique based on a support vector regression (SVR) model was applied in this study 
for the G forecasting, where the model’s parameters were selected using a particle swarm optimization 
(PSO) algorithm. The performance of PSO–SVR was compared with multivariate adaptive regression 
spline (MARS) and the traditional model of SVR. The results showed that the PSO–SVR model 
outperformed MARS and SVR. 

��1 Introduction 
Electricity demand (G) forecasting is a purely 
fundamental yet a challenging optimisation task for 
improving business efficiency of the electricity industry. 
A relationship between the G data and temperature is 
clearly evident in winter and summer [1]. Hence, it 
would be significant to develop a forecasting model 
employing both the G and related climate input datasets. 

In recent years, support vector regression (SVR), PSO 
algorithm, and multivariate adaptive regression splines 
(MARS) have been widely adopted in energy demand 
forecasting [1]. Those methods have been used to 
forecast G in [1, 2], however, the influences of the 
climate datasets are not incorporated yet. 

The main contribution of this research paper is to 
improve the G forecasting accuracy by involving climate 
datasets and integrating the merits of the PSO algorithm 
with the SVR model. To evaluate the PSO-SVR model, 
the traditional methods of the SVR and MARS 
algorithms are also developed. 

2 Theoretical Background 

2.1 Support vector regression 

 
  

A nonlinear regression problem can be solved by a SVR 
model, which is a machine learning method and 
pioneered by [3], below: � = �(�) = � ∙  ∅(�) + � (1) 

where � = {	
}
��
� ∈ ℛ�, � = {�
}
��
�� ∈ ℛ  are the 
predictors and target variables, respectively. �  is a 
constant, � is the weighted vector, and ∅(�) represents 
the mapping function employed in the feature space. A 
minimisation technique is used to estimate the 
coefficients � and � as follows [3]: 
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where the smoothness of the function is determined by �� ∥ � ∥�,  �  and �  are the model’s parameters and the 
nonnegative slack variables (� and �∗)  demonstrate the 
distance between actual and equivalent boundary values 
of a function approximation. A nonlinear regression 
function can be expressed by Eq. 4 after applying 
Lagrangian multipliers and optimising conditions [3]: 

�(�) = ∑ (�
 − �
∗)�!	
, 	"# + �
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where 	
 and 	" $ �, and the term �!	
, 	"#  denotes the 
kernel function.  �
 and �
∗ are Lagrangian multipliers [3]. 
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In this study, the radial basis function (RBF) was used in 
the processing of the  SVR model as follows [4]: 

�!	
, 	"# = %	& '*-./*.1-2
�32 4 (5)

where the kernel width and inputs are represented by 5
and 	
, 	" , respectively. The critical task for developing 
the SVR model with a good accuracy is to determine the 
three parameters which are kernel width (5 ), the loss 
function (�) and regulation (�) during the training period 
[5]. This is achieved through a hybrid method called 
particle swarm optimization (PSO) in section 2.3 below. 

2.2 Multivariate adaptive regression splines 

The relationship between � and � is demonstrated by the 
MARS model as follows [6]: 

� = �6(�) = 78 + ∑ 79:;9(�)<9�� (6) 

where � and �  are offered in Eq. 1,  78  is a constant, 

� �1

M
ma  are the model coefficients, >  is the number of 

basis functions in MARS, and :;9(�)  is a spline 
function defined as �(�|?, @�, @, @�) , where @� < @ < @� ,
and ? = ±1. 
The number of the basis functions for developing MARS 
model is determined through the Generalized Cross-
Validation criterion (C�D)  based on the mean square 
error (MSE) [6]: 

C�D = >EF/[1 − HI(<)� ]� (7)

where >EF = �� ∑ J�
 − �6(�
)K��L�� . CI(>) = �(>) + M ∙>, where M is a penalty factor with a characteristic value 
of v = 3. �(>) is the number of parameters being fitted. 
In the training dataset, the lowest value of the C�D refers 
to the optimal MARS model. 

2.3 Particle swarm optimization (PSO) 

To select the best parameters of the SVR model, which 
are the regulation function (C), kernel width (�) and loss 
function (�) , the PSO algorithm, first introduced by 
Kennedy and Eberhart [7, 8], is employed in this paper 
using the mean square error (MSE) as the fitness function
as follows [9-11]:D
,"(N + 1) = � ∗ D
,"(N) + O� ∗ rand()∗ PQRSTU/,1(N) − �
,"(N)V + O�∗ rand()∗ PWRSTU1(N) − �
,"(N)V

(8)

�
,"(N + 1) = �
,"(N) + D
,"(N + 1) (9)

where �
 = (�
�, �
�, … , �
X)Y is the ith particle from the 
initial population of the size of Z = 1,2, … , ^  and a
dimension _� ` = 1,2, … , b. D
 = (D
�, D
�, … , D
X)Y  is the 

velocity of each particle �
 in the population. According 
to [9, 11], rand() represents a random number between 
zero and one while the individual and global extreme 
values are represented by QRSTU/,1 and WRSTU1 , respectively.
The two values of O� and O� are usually within [2, 2.05], 
whereas � can be defined as follows [9, 10]: 

� = �9
 + (c9e. − c) ∗ (�9e. − �9
)c9e.
(10)

where �9
  and �9e.  usually equal to 0.4 and 0.9; c and c9e.  are the current and maximum iteration 
numbers, respectively [9].  

3 Materials and Methods 

3.1 Electricity demand data (G)

In this study, the G data were recorded half-hourly (48 
times per day) in Megawatts (MW) for the state of 
Queensland, and these data were acquired from the 
Australian Energy Market Operator (AEMO) [12] for the 
period of 01-01-2015 to 31-12-2016 (dd-mm-yyyy). The 
30-minute data periods were converted to daily terms by 
obtaining total values for each day. Figure 1 showed the 
plots of the actual G data series.

Fig. 1. Time-series of electricity demand (G MW) data.

3.2 Climate dataset 

Historical climate datasets for the same period of the G
data were obtained from Scientific Information for Land 
Owners (SILO) [13]. The data were collected for the 
main eleven stations, which contain the majority of the 
population of Queensland, that were shown in Fig. 2 and 
Table 1.

Fig. 2. Area map for the climate datasets.
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Fig. 3. Time-series of climate datasets used in this study.

Table 1. Population for each climate station 

No. Station Population number
1 Cairns 240,190
2 Townsville 229,031
3 Mackay 43,364
4 Rockhampton 79,726
5 Gladstone 61,640
6 Bundaberg 92,897
7 Hervey Bay 53,035
8 Sunshine Coast 346,522
9 Brisbane 2,270,800
10 Gold Coast 555,721
11 Toowoomba 149,512

Total 4,122,438

The population numbers were obtained from 
Australian Bureau of Statistics [14] where the total 
number of population resulted from the eleven stations in 
Table 1 is very close to the population of whole 
Queensland (4,883,739). 

The input data were comprised of the time-series of 
maximum and minimum air temperature (c9e. and c9
),
rainfall (Rain) evaporation (Evap), solar radiation (Radn) 
and vapour pressure (VP). The datasets for whole 
Queensland were obtained by getting the average of c9e., c9
, Radn and VP and the total values of Rain and 
Evap of the eleven stations datasets. Those were used as 
the inputs of the models. Figure 3 showed the plots of 
those actual time series.

3.3 Forecast model development and validation 

The climate variables in section 3.2 above were used to 
forecast the G data by developing three models: PSO-
SVR, SVR and MARS. As there is no a single method for 
splitting data into training, validation and testing [5], the 
data were divided into subsets of 70% for training, 15% 
for validation and 15% for testing.

MATLAB-based Libsvm toolbox (version 3.22), 
developed by Chang and Lin [15], was used to build the 
SVR model. To develop a hybrid SVR model, the PSO 
algorithm (section 2.3) was used to select the optimal 
parameters based on the smallest value of MSE. To 

evaluate the accuracy of the SVR model, the software 
packages version 1.13.0 was employed [16] for the 
MARS model. 

The models were validated in Table 2 using the root-
mean square error (RMSE, Eq. 11). The PSO–SVR model
yielded the lowest RMSE, which indicated the best 
accuracy compared to the other models. 

Table 2. Root-mean square error (RMSE; MW) in the validation 
dataset

Model RMSE (MW)
PSO–SVR 12730.52
SVR 12930.53
MARS 16701.61

3.4 Model performance evaluation 

This study adopted a wide range of statistical error criteria 
in the testing period based on statistical indicators. Those 
are mean absolute error (MAE), root-mean square error 
(RMSE), relative error (%) based on MAE and RMSE
values (MAPE and RRMSE), Willmott’s Index (WI), the 
Nash–Sutcliffe coefficient (F�f) , and the Legates and 
McCabe Index (Fg<) [17-26], represented below:

h>EF =  i� ∑ !C
jkl − C
kmo#�
�
�� (11)

>pF =  � ∑ qC
jkl − C
kmoq 
�
�� (12)

hh>EF = 100 × ist ∑ uH/vwx*H/wyz~2/�t/�s Hwyz������� (13)

>pQF = 100 × � ∑ �H/vwx*H/wyz
H/wyz � 
�
�� (14)

�� =
1 − � ∑ uH/vwx*H/wyz~2/�t/�s

∑ u�H/vwx*Hwyz����������H/wyz*Hwyz��������~2/�t/�s � ,    0 ≤
�� ≤ 1

(15)

F�f = 1 − �∑ uH/vwx*H/wyz~2/�t/�s
∑ uH/wyz*Hwyz�������~2/�t/�s � , -∞ ≤ F�f ≤ 1 (16)
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Fig. 4. Scatterplot of the G-forecasted vs. G-observed of electricity demand data in the testing period using the three models. The 
equation of linear regression line and the coefficient of determination are incorporated.

Fg< = 1 − �∑ �H/wyz*H/vwx� /�t/�s
∑ �H/wyz*Hwyz�������� /�t/�s

� , -∞ ≤ Fg< ≤ 1 (17) 

where C
jkland C
kmo are the ith forecasted and observed 
values of G in the testing period, respectively; n is the 
total number of C
jklor C
kmo values, Cjkl������ and Ckmo������  are 
the means of forecasted and observed values, 
respectively. 

4 Results and Discussions 
The performance of the PSO–SVR model for the daily 
forecast horizon was compared with traditional SVR and 
MARS models in the testing period. The results of the 
comparison indicated that the PSO–SVR yielded better 
performances (lowest RMSE, and MAE, as well as the 
largest WI, ENS, and ELM) than SVR and MARS models. 
Those values were summarized in Table 3.

Table 3. The performance evaluation of the models in the test 
period 

Model WI ENS
RMSE
(MW)

MAE
(MW)

MAPE
(%)

RRMSE
(%) ELM

PSO–
SVR 0.88 0.66 11716.97 9668.15 3.27 3.92 0.41

SVR 0.87 0.64 11909.00 9895.09 3.34 3.99 0.40

MARS 0.87 0.60 12612.22 11003.20 3.69 4.22 0.33

The scatterplots of C
jklvs.  C
kmo  and the model 
forecasted errors, |;F| = |C���,
 − C��f,
| in the testing 
period for the three models were shown in Figs. 4 and 5, 
respectively. The lowest forecasted errors (|;F|)  were 
shown by the PSO-SVR model in this study (Fig. 5). On 
the other hand, the highest correlation of determination (h�)  was achieved by the PSO-SVR model (Fig. 4). 
Overall, a significantly greater accuracy was attained by 
the PSO–SVR model than the other models. 

Fig. 5. Model forecasted errors, |;F| = |C���,
 − C��f,
| in the 
testing period using the three models.

5 Concluding Remark 
In this paper, a hybrid PSO–SVR model was proposed 
for daily G forecasting horizon in Queensland, Australia, 
where the model used data from Australian Energy 
Market Operator (AEMO) and Scientific Information for 
Land Owners (SILO). The MARS and the traditional 
method of SVR were also used in this research study to 
evaluate the main model. The results showed that the 
PSO–SVR outperformed the MARS and SVR models. 
As a result, the data-driven tool constructed by the PSO–
SVR model is a powerful forecasting framework which 
can support the National Electricity Market (e.g.,
AEMO). Although the PSO–SVR model performed well 
in this paper, some challenges in model development 
section could be appeared. As the PSO algorithm needs a 
longer time to produce the SVR parameters, alternative 
methods, such as multi-swarm PSO and sine cosine 
algorithm may need to be used. In addition, the model 
could be improved using ensemble-based uncertainty 
testing by a bootstrapping technique. Those should be 
addressed in future studies.
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