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Abstract. This paper exposes a method to classify the electric consumption profiles of different types of 
consumers, based on patterns given. The direct characteristics method is used in this paper, this method is 
also known as shape factors deduction (SFs) to easily define consumption profiles by using the load 
patterns resulting from measurements in the time domain, considering weekdays and time ranges. After 
the characterization of load profiles, k-means clustering technique is applied to SFs. The SFs are 
segmented in such a way that, in each group similar SFs are gathered. The characterization and 
classification of electric profiles has important applications, such as the application of specific tariffs 
according the consumer type, determination of optimal location of generation resources in electrical 
distribution systems, detection of anomalies in transmission and distribution of electricity or classify 
geographical areas according to electricity consumption and perform an optimum balance of feeders in 
electrical substations. 

1 Introduction 
Due to the liberalization of the electricity market, 
electricity trading companies have more freedom to set 
tariffs, by following technical and economic legal 
regulations. The electricity companies are developed in a 
profit-oriented context and they are interested in 
developing market strategies for the tariffs formulation. 
Detailed knowledge of customer consumption is essential 
to design specific tariff options, in which tariffs are 
aligned to the effective electricity use [1], [2].  

The generation, transmission, distribution and 
commercialization companies currently have an extensive 
measurements database [3]. The analysis of these data 
allows consumer characterization, however, this task 
becomes complicated when the appropriate tools are not 
available [4]. 

The characterization of consumers is used for the 
integral planning of the system, considering alternative 
electricity demand management (EDM). In EDM, the 
effectiveness of each strategy must be evaluated by 
characterizing the load profile and identifying the 
characteristics of the demand in each type of consumer 
[1]. If the electric companies know in detail the demand 
behavior, they can improve their tariffs offer [5]. 

The clustering of consumers based on their activity 
information or commercial codes seems inefficient, since 
the load patterns show important differences. The 
classification based on the consumption pattern similarity 

provides more effective results [6]. The procedure to 
classify consumers has different stages, i) define the 
information that can be collected in the field, ii) choose 
the characteristics that are used to execute the clustering 
techniques, iii) use clustering techniques, iv) evaluate the 
effectiveness of clustering by calculating validity 
indicators and v) establish the final load profiles that 
represent a limited number of final consumers types. In 
order to establish a consumer clustering based on 
similarity aspects, there are many techniques [6]. 

The importance of the characterization of consumers  
is highlighted in [7]. In this review, an extensive review 
of concepts and methods for the classification in 
competitive electricity markets is made. In addition, a 
general description of classification techniques, including 
classical approaches, is presented. Finally, this paper is 
focused on developed methods that describe the electrical 
behavior of customers based on real cases. 

In [1], an integral approach is proposed to investigate 
the market’s strategies development based on consumers’ 
clustering into well-defined and non-overlapping classes.  

Aiming to make the classification, two sets of indexes 
are considered, the first set is the priority indexes, based 
on contractual and historical data, which are stored in the 
public services database, and the second set is the 
measured indexes, obtained through field measurements. 

For the management of the historical data of the 
different electrical consumption patterns (ECPs). We 
choose unsupervised procedures or also called clusters to 
find characteristics to be used in the categorization. This 
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allows obtaining an idea of the nature or structure of the 
data [8].

All the clustering techniques are based on 
mathematical criteria that assess the quality of clustering 
models that comprise prototypes and data partitioning. 
The mathematical criteria serve as cost functions that 
must be minimized to obtain optimal cluster solutions [9].
Such cost functions define an optimization criterion of 
the clustering techniques.

These techniques can be used to simplify calculation, 
accelerate convergence and obtain an acceptable 
computational performance. All these steps give way to 
an elementary and approximate method that is described 
in this paper. 

This paper shows a method to characterize and 
clustering the ECPs through the use of SFs proposed by 
the authors and the application of k-means clustering 
technique. The proposed methodology stands out for its 
simplicity and efficiency.

These SFs allow the reduction of sensitivity to 
outliers when they are grouped. Additionally, based on 
unsupervised learning and in an optimize cost function 
the number of clusters is found, which allows obtaining 
patterns to understand, summarize, and categorize the 
electricity consumption of consumers. 

This work is segmented into four sections. In section 
II the applied methodology is presented, in section III 
obtained results are analyzed. Finally, in section IV, 
conclusions are presented.

2 Methodology

2.1 Information gathering 

The methodology requires electricity consumption data in 
15-minute intervals from electricity meters.

2.2 Data characterization 

2.2.1 ECPs recognition 

Table 1. Time ranges. 

Time Period Description 

Number of 
measurements 
taken by the 

electricity meter 
every 15 minutes 

07h00 to 18h00 Ecuadorian electric 
commercialization time 
ranges for commercial 

and industrial consumers 
[11]. 

44

18h00 to 22h00 16

22h00 to 07h00 36

06h00 to 12h00 Time ranges are 
determined by the 

residential, commercial 
and industrial load curves 

in Ecuador. 

24

12h00 to 15h00 12

15h00 to 18h00 12

Each ECP is represented by the use of N characteristics 
according to the measure data and the desired detail of 

the load pattern representation. In this case, the number 
of characteristics to represent each daily ECP is 96, since
each data corresponds to the measurements average taken 
during every 15 minutes of an entire day.

It is necessary to define time ranges and weekdays 
according to the electric tariff and working patterns as a 
previous step to classify the ECPs [10]. Table 1 shows 
the time ranges and the number of measurements in each 
time period for commercial and industrial consumers 
according to Ecuadorian regulations. 

2.2.2 Shape factors definition for ECPs 

The SFs are normalized active power values; these are 
obtained in different time periods depending of time 
ranges previously defined in Table 1. Each factor value 
depends on the behavior of each consumer [12].

To obtain the SFs of ECPs, the maximum, minimum 
and average power values are used 
(����,∆�, ���	,∆�, ��
,∆�) for each defined time range [13].
A total of 23 SFs are proposed, which characterize each 
ECP. Table 2 summarizes the SFs proposed by the
authors. The SFs are considered to determine the
characteristics of ECPs in each defined time range and 
according to the weekday it is analyzed.

 
Table 2. Shape factors. 

SFs Equation Time Period 

Load Factor (f1) �� =  ������������� All day 

Non-uniformity 
coefficient (f2) 

�� =  �������������� All day 

Average Impact �� =  ���������� �����������
For every time 
range in Table 

1 
Maximum Impact �� =  ����������� �����������
Minimum Impact �! =  ������������ �����������

All day’s maximum 

impact (f21) 
��� =  �������

All day All day’s average 

impact (f22) 
��� =  ������

All day’s minimum 

impact (f23) 
��" =  ��������

Table 3. SFs’ association. 

Associated 
Factors Dimensions Time Period 

f1-f2 2D All day 

f3-f4-f5 3D 06h00 to 12h00 

f6-f7-f8 3D 12h00 to 15h00 

f9-f10-f11 3D 15h00 to 18h00 

f12-f13-f14 3D 07h00 to 18h00 

f15-f16-17 3D 18h00 to 22h00 

f18-f19-f20 3D 22h00 to 07h00 

f21-f22-f23 3D All day 
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There is one limitation when the direct form 
characteristics method is applied; this limitation takes 
place when visualizing the relationship between SFs in 
only one graphic. Therefore, there is a need to associate 
them in a way that they can be clearly observed as they 
are related (Table 3). 

2.3 Clustering 

The k-means clustering technique is a partitioning 
procedure based on a number of iterations [14]. The SFs 
are clustering in k mutual exclusive clusters and they 
return the cluster index to which each observation has 
been assigned. This method is applied on real 
observations and it creates a unique level of clusters. The 
k-means clustering technique is used since it represents a
robust technique when large amounts of data are 
analyzed [15].

Each observation has in-space location, this allows 
the method clustering them in a way that, inside of each 
cluster the observations are as close as possible to each 
other and as far as possible from the other observations of 
the other clusters [16]. 

The k-means clustering technique calculates the 
centroids of each cluster, initially in an arbitrary way 
from the data in analysis [17], [18]. These centroids are 
used to classify such observations into clusters according 
to a selected metric. The clusters’ centers are recalculated 
until the minimum cost function is found from the 
applied metric inside the method. The k-means technique 
uses the Euclidean distance (Ed) as the metric for data 
clustering [16]. The Euclidean distance between the SFs 
that are in the n-dimensional space is calculated. In a 
general form, the Euclidean distance between the SFs of #$��(��, ��, … , ��") and #$��(��, ��, … , ��"), is define as:

 #%(ECP�, ECP�) = &'[��(*+-.) − ��(*+-/)]��"
�0�  (1) 

To advance with the clustering process, it is necessary 
to find the maximum number of clusters for analyzed 
data. Then an adequate number of clusters is defined 
based on the use of silhouettes coefficients (SCs) of each 
ECP [19]. 

2.3.1 Maximum number of clusters 

To determine the maximum number of clusters in which 
the SFs can be segmented, the methodology uses the 
Sturges’ rule [20]:

 1 = 1 + log�(4) (2) 

where:
� 5 is the number of samples (number of daily 

ECPs).
� 6 is the maximum number of clusters in which 

SFs can be segmented.

1) Output arguments 
When the k-means clustering technique is applied the 
output arguments obtained are [12]:

� Indexes of clusters for each ECP. 
� Location of the centroids according to the 

number of clusters specified. 

2) Silhouette coefficients
The SCs are used to know the optimal number of clusters 
for the data. Then the SC is calculated for each ECP 
based on SFs. It is a measure that combines the 
agglomeration and separation on how close an ECP is to 
other ECPs in the same cluster. The SC for each ECP can 
vary from -1 to +1. Based on this criterion, an ECP is 
correctly grouped when the SC is close to 1 [14].

If majority of ECPs have a high silhouette value, the 
clustering is correct. The SC of each ECP calculation is 
based on the equation (3) [21], [22]: 

 7�  = 89 −  :9;:<(:9, 89) (3) 

where:  
� >?  represents the average distance value 

determined from the i-sample to all data in the 
same cluster. 

�  @? represents the minimum value of the average 
distances determined from the i-sample to all 
data in other clusters. 

� A? represents the SC for the i-sample.

From the equation (3), the average value of SCs is 
obtained according to the number of clusters with which 
the segmentation procedure was performed. The highest 
average value indicates the appropriate number of 
clusters to be applied [23] as shown in Figure 1.

Fig. 1. Average silhouette values according to the clusters’ 

number. 

Fig. 2. SCs for each observation with 2 clusters. 
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3 Results analysis 
The results analysis is made based on the measurements 
obtained from the main connection of the Universidad 
Politécnica Salesiana (UPS), Sede Cuenca, Ecuador.

3.1 Characterization of ECPs 

In Figure 3, Mondays ECPs are show; while Figures 4 
and 5 show the association of the SFs characterize every 
single ECPs in 2D and 3D correspondingly, as show in 
Table 3, for the reason that the 23 SFs cannot be 
displayed in a single figure. 

In this way, Figure 4 and Figure 5 show the 
association of SFs in two elementary clusters. This is 
corroborated by determining the highest average value of 
the SCs.

Fig. 3.  Electric load profiles (Mondays). 

Fig. 4. SFs association (F1-F2). 

Fig. 5. SFs association (F3-F4-F5). 

3.2 The k-means clustering technique 
application 

The k-means application is carried out with 126 ECPs. 
According to the available data and the Sturges Rule, it is 

determined that the maximum number of possible 
clusters is 7.

As follows, the average values of the SCs for each 
possible cluster are obtained. This allows the 
determination of the appropriate number of clusters for 
the analyzed ECPs. Table 4 shows the average values of 
the SCs according to the number of clusters. The highest 
average value of the SCs shows the most appropriate 
number of clusters. Therefore, the 126 ECPs analyzed are 
segmented into 2 clusters.

Table 4. Average values of the SCs according to the number of 

clusters. 

Clusters Average value of the SCs 
1 - 
2 0.9663 
3 0.7435 
4 0.6768 
5 0.6789 
6 0.6618 
7 0.6847 

In this case, cluster A contains 87 profiles, while 
cluster B contains 39 profiles. These profiles represent 
workdays and nonworking days correspondingly.  

3.3 ECPs classification 

In order to carry out a correct ECPs classification, 
outliers are identified inside each cluster [24].

After applying unsupervised support vector machines 
and obtaining the best separation hyperplane between all 
the data inside each cluster [18, p. 53], 11 atypical 
profiles are detected in cluster A (Figure 6) and 10 in 
cluster B (Figure 7). 

Fig. 6. Cluster A’s ECPs, 76 typical profiles (above), 11 

atypical profiles (below) 

Fig. 7. Cluster B’s ECPs, 29 typical profiles (above), 10 

atypical profiles (below). 
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3.4 Obtaining patterns 

The set of typical ECPs define the electrical consumption 
pattern. Figure 8 shows the pattern of workdays (cluster 
A), while Figure 9 shows the pattern of nonworking days 
(cluster B). 

Fig. 8. Cluster A ECPs’ pattern box-plot. 

Fig. 9. Cluster B ECPs’ pattern box-plot.

The electric consumption characterization allows the 
ECPs recognition at a measurement point. From each 
ECP, their respective SFs are defined, which are the basis 
for the clustering process. Next, atypical profiles are 
identified and separated. The typical profiles of each 
cluster represent the usual demand of the installation, that 
is, a consumption pattern. Consumption patterns are 
useful in several areas, such as forecasting and predicting 
demand [25], energy management, efficiency policies 
implementation and energy intelligence, improving the 
supply of tariffs, etc. 

4 Conclusions
In this paper, a characterization method was applied for 
clustering of ECPs at UPS Cuenca, Ecuador by using SFs 
and the application of the k-means technique. 

The SFs definition allows the characterization of the 
ECPs. This requires criteria and intuition. The k-means 
technique allows clustering the SFs in such way that the 
ECPs are clustered according to their similarity.

The appropriate number of clusters in which the ECPs 
are segmented is defined through the SCs criterion, which 
allows to simplify the process and improve the 
computational performance.

The anomalies detection process allows to obtain SCs 
values closer to 1 in each cluster, which makes it possible 
to define clearly the electric consumption characteristics. 

This way the understanding of the structure that they 
possess improves considerably.

Traditionally, most electric companies used to 
classify their consumers using minimum electrical 
parameters and some commercial regulations. This way, 
current electricity markets need to classify their 
consumers by indicators capable of characterizing their 
true electrical behavior.

The method allows obtaining the average daily energy 
consumption pattern of each cluster. This pattern is 
obtained from the typical profiles of each cluster and 
allows the determination of the kind of consumer to
which it belongs; as well as defining tariffs that are clear,
transparent and easy to understand, but flexible enough to 
follow the variations in the consumer's load pattern 
induced by specific rates.

If the consumption patterns are known by the 
consumer, they could be interested in managing the 
energy they use, by improving their energy performance, 
achieving economic benefits and decreasing their 
environmental footprint.

One of the limitations of the k-means method is the 
sensitivity to outliers. 

In addition, a problem presented by the method 
applied in this paper is summarized in the precision with 
which the data can be clustered. The method works 
efficiently with large databases but when there are abrupt 
changes in the ECPs, the method can become imprecise, 
since SFs will be affected.
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