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Abstract. The study examined artificial neural network (ANN) modeling 
for the prediction of chlorpyrifos, cypermethrin and chlorothalonil 
pesticides degradation by the FeGAC/H2O2 process. The operating 
condition was the optimum condition from a series of experiments. Under 
these conditions; FeGAC 5 g/L, H2O2 concentration 100 mg/L, pH 3 and 
60 min reaction time, the COD removal obtained was 96.19%. The ANN 
model was developed using a three-layer multilayer perceptron (MLP) 
neural network to predict pesticide degradation in terms of COD removal. 
The configuration of the model with the smallest mean square error (MSE) 
of 0.000046 contained 5 inputs, 9 hidden and, 1 output neuron. The 
Levenberg–Marquardt backpropagation training algorithm was used for 
training the network, while tangent sigmoid and linear transfer functions 
were used at the hidden and output neurons, respectively. The predicted 
results were in close agreement with the experimental results with 
correlation coefficient (R2) of 0.9994 i.e. 99.94% showing a close 
agreement to the actual experimental results. The sensitivity analysis 
showed that FeGAC dose had the highest influence with relative 
importance of 25.33%. The results show how robust the ANN model could 
be in the prediction of the behavior of the FeGAC/H2O2 process. 

1 Introduction 
Pesticide pollution is a potential problem to surface and ground water. Pesticide presence in 
surface water including streams and ditches opposite farmlands and inland rivers have been 
recorded [1-2]. Part of the larger scale contamination results from non-agricultural uses of 
pesticides [3] or from point sources, including discharge from farmyards following filling 
and washing activities [4]. Diffusion of pesticides in both air and water are also noteworthy. 
Diffusion occurs during pesticide application in farmlands or when they find their way into 
drains and are transported into the natural environment [5]. Possible chronic effects of 
pesticide pollution are reported to include neurotoxicity [6] carcinogenesis [7] affect 
reproduction [8] and cell development [9]. This is very prominent in the early stages of life. 
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Pesticide concentration in wastewater may vary; however, effective treatment is required 
irrespective of the concentration. Biological processes are normally chosen for treatment of 
pesticide wastewater. However, this method of treatment is liable to deactivate microbial 
organisms. An advisable method is to carry out pretreatment of the pesticide wastewater 
before application of the biological treatment [10]. 

Advanced oxidation process (AOP) is a promising technology whereby chemical 
reactions generate hydroxyl radicals (OH.) in large quantity and oxidizes pollutants in water 
or wastewater in room temperatures [11]. The Fenton process is typically a reaction 
between iron salts and hydrogen peroxide (H2O2) to produce hydroxyl (OH•) radicals. This 
occurs due to the catalytic decomposition of hydrogen peroxide in acidic pH [12-13].   

Ferrous ions and hydrogen peroxide react and produce OH. iron sludge and it is 
inevitably produced in addition to complex agents and intermediate products [14]. This 
generates an added handling cost with regards to disposal after the treatment [15], 
Therefore, Fe-granular activated carbon/hydrogen peroxide (FeGAC/H2O2) process has 
been recently put forward as an alternative [16]. In the reaction between FeGAC and H2O2, 
the GAC adsorbs the contaminants in the waste stream and provides support for the 
reaction between the ferric iron and hydrogen peroxide to catalyse other contaminants 
remaining in the wastewater. Additionally, the GAC catalyses the wastewater owing to the 
presence of functional groups and surface graphitic structure [17]. On another hand, the 
hydrogen peroxide oxidizes the GAC and ferric salt catalytic properties to degrade the 
contaminants in the wastewater. The application of FeGAC/H2O2 includes Acid Black 24 
decolourization [18], removal of humic substances (and fulvic acids) in municipal landfill 
leachate [18] and crystal violet degradation [16].  

Wastewater treatment by AOP is tasking due to the complex nature required to solve 
equations that may involve radiant energy balance, spatial distribution of the absorbed 
radiation, mass transfer, and other mechanisms of photochemical or photocatalytic 
degradation processes. Because of the multiple factors this process depends on, the 
modeling approach is very important. The ANN is capable to simulate such complex 
interactions that could exist between an input variable and output variable in a typical 
wastewater treatment plant [19 – 22].  

Artificial neural network has been taught to carry out very complex tasks in a variety of 
fields. This includes identification, pattern recognition, classification, classification, vision, 
and control systems [19; 22]. The advantages of ANN is such that mathematically 
describing the phenomena involved in a process is not necessary and this makes it useful 
for the simulation and up-scaling AOP treatment processes. In addition, less time is needed 
for development of the model in comparison to traditional mathematical models and their 
prediction ability using very few laboratory data [23-24].  The ANN has been applied in 
biological wastewater treatment [25-26] and physicochemical wastewater treatment [27-
28].  Some studies have also reported the use of ANN for modeling full scale biological 
wastewater treatment plant and for removal of nitrogen and phosphorus from wastewater 
[29-30].  However, at present there is no report on ANN modeling for prediction of 
chemical oxygen demand (COD) removal from chlorpyrifos, cypermethrin and 
chlorothalonil pesticides in aqueous solution. This study investigated the application of 
ANN for predicting COD removal from pesticide aqueous solution by the FeGAC/H2O2 
process. A comparison of the model outs and experimental results is also reported.  
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2 Materials and methods 

2.1 Chemicals  

The chemicals used were supplied by R&M Marketing, Essex, U.K. This includes H2O2 
(30%, w/w) and (Fe(NO3)3·9H2O).  A commercial supplier provided the pesticides used 
during this study.  
 
2.2 Fe-granular activated carbon (FeGAC) 

The GAC purchased from Calgon Corporation, Pittsburgh, PA was blended to reduce it to 
425 µm size. The preparation of the FeGAC was according to a previous study [18]. 
 
2.3 Analytical methods 

Measurements of COD were done in accordance to Standard Methods [31]. In an effort to 
minimize an interference of COD values obtained, pH was raised above 10 immediately 
after the treatment. This was to enable hydrogen peroxide to decompose to oxygen and 
water [32-33]. The pH meter (HACH sension 4) was used in measuring pH during the 
entire process. 
 
2.4 Pesticide aqueous solution 

Preparation of the pesticide aqueous solution was done using distilled water and was stored 
at 4 ºC until required. Its constituents were CPF 100 mg/L, CPT 50 mg/L and CTN 250 
mg/L. The COD was 1130.0 mg/L, TOC was 274.39 mg/L and BOD5/COD ratio was zero. 
 
2.5 Experimental procedure     
  
FeGAC/H2O2, laboratory study was conducted using 200 mL of the pesticide aqueous 
solution place inside a 250 mL conical flask. The quantity of iron salt needed was added to 
this solution. Thereafter, an adjustment of solution pH was done as maybe needed using 
H2SO4 or NaOH. Stirring the solution to appropriate mix was done using a magnetic stirrer 
for good homogeneity. The required amount of H2O2 was thereafter added to the solution. 
At known time intervals, a conical flask was removed and a portion of the solution was 
filtered using a 0.45 µm size filter for COD measurement. 
 
 
2.6 Artificial neural network   

The ANNs are known mathematical models having the ability of learning, simulation and 
prediction of data based on past observations in complex systems without knowledge of any 
fundamental principles of any system [34]. They are biologically inspired computer 
programs designed to simulate the way the human brain processes information [35]. The 
disadvantage of ANN is its “black box” nature. The relationship between the input and 
output variables are not built on engineering principles and thus the model is referred to as 
‘black box’. There is also a problem of overfitting along with its computational burden and 
large sample size requirement [36-38]. The network has a lot of single processing units 
referred to as neurons and these are usually interconnected using a variety of architectural 
structures. The interconnection strength is determined by the weight associated with 
neurons. The ANN modeling consists of two major stages (i) training and (ii) testing. In 
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training stage the input and targets (outputs) are both presented to the network, whereas in 
testing stage only inputs are presented to the network and outputs are predicted based on the 
learned examples. A program code written by MATLAB 2009a neural network toolbox was 
used for modeling the COD removal from the pesticide aqueous solution. 

 
3 Results and discussion 

3.1 Effect of FeGAC 

To study the effect of FeGAC on COD removal, the FeGAC dose was varied between 1 to 
5 g/L. Figure 1 shows the effect of FeGAC dose on the removal of COD from the pesticide 
aqueous solution. It was observed that an increase in FeGAC dose from 1 to 5 g/L led to an 
increase in COD removal from 56.9 to 85.75% in 60 min. This could be due to increase in 
the generation rates of ferrous ions as the FeGAC is increased [17].   

 
Fig. 1. Effect of FeGAC in terms of COD removal 

 
3.2 Effect of H2O2 addition to FeGAC 

 
In heterogeneous Fenton-like process, combining ferric ions and H2O2 leads to a reaction 
which occurs at the solid surface of the catalyst and it could also depend on the nature of 
the specific area of the catalyst [39]. In order to observe the effect of FeGAC with H2O2 
addition on COD removal, H2O2 dose was varied between 10 to 300 mg/L and the FeGAC 
dose was kept fixed at 5 g/L. Figure 2 shows the effect of H2O2 addition on COD removal. 
The COD removal increased from 51.68 to 96.19% in 60 min when H2O2 dose increased 
from 10 to 100 mg/L, but reduced when H2O2 concentration was further increased from 100 
mg/L to 300 mg/L. The maximum COD removal was 96.19% at H2O2 dose 100 mg/L. The 
improvement with the addition of H2O2 was probably due to the increased catalytic reaction 
between the coated iron and H2O2. The decrease in degradation above 100 mg/L was 
probably due to competing reaction of GAC, OH. and ferrous/ferric ions upon H2O2 
degradation [18]. This has been reported by another study to be probably as a result of the 
scavenging effect of excess OH• by hydrogen peroxide [40].  
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Fig. 2. Effect of H2O2 addition to FeGAC in terms of COD removal 

 
3.3 Effect of pH 

 
The solution pH has a major effect upon the catalytic activity in decomposition of hydrogen 
peroxide and OH. production [41]. In order to observe the effect of pH on COD removal, 
pH was varied between 2 and 8, and H2O2 and FeGAC were kept constant at 100 mg/L and 
5 g/L, respectively. Between pH 2 and 3 the COD removal increased, but from 4 to 8 there 
was reduction in COD removal (Fig. 3). Typical Fenton-like reaction process has been 
reported to achieve a higher removal of COD in the acidic range of pH 3-4 [12].   

 
Fig. 3. Effect of pH on COD removal 

 
3.4 Effect of initial pesticide concentration 

 
To investigate the effect of the initial pesticide concentration on COD removal, various 
initial concentration of the pesticide (400, 800 and 1200 mg/L) were used. Other parameters 
were pH 3, H2O2 100 mg/L and FeGAC 5 g/L. At high initial pesticide concentration, net 
removal was more but percentage removal was less (Fig. 4). In heterogeneous Fenton 
process such as the FeGAC/H2O2 process, the reaction occurs at the surface of FeGAC 
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between OH. produced at the active sites and pesticides molecules adsorbed on the surface. 
Therefore, where pesticide concentration increased, the number of active sites available 
decreased due to the competitive adsorption on the catalytic surface by the pesticide 
molecules. Added to this, intermediate products of oxidized pesticide can also compete for 
the limited adsorption sites with parent pesticide molecules, which limit their interactions 
with Fe(II)/Fe(III) active sites [42]. Therefore, concentration of FeGAC is an important 
factor in the application of FeGAC/H2O2 process for varying COD loadings. 

 
Fig. 4. Effect of initial concentration on COD removal 

 
3.5 Input data selection 

 
The screening of input variable data before selection is an important part of the network 
development. This is because the ANN modeling seriously needs to depend on the input 
data as it represents both the non-linearity and complexity of the whole data during training 
of the network [43]. The available data should be divided into training and testing data sets 
in such a way that the data set presented during training should contain maximum 
variations of the available data. In the present study, the available data was limited to 60 
sets which were presented to the network during the training stage, whereas the preceding 
30 sets were tested during the testing stage for model validation. The input vectors were, 
FeGAC, H2O2, pH, time and pesticide concentration. The output vector was the percentage 
of COD removal. 
 
3.6 Selection of backpropagation training algorithm  

 
The main objective of training algorithm is to minimize or limit the error function by 
finding a set of connection weights that creates a condition for the ANN to produce outputs 
equal or close to the target values. Backpropagation algorithms minimize error function 
between the observed and predicted output through two phases [43]. Several algorithms 
were studied (data not shown). During the training of the network, the Levenberg–
Marquardt backpropagation algorithm was applied. The tangent sigmoid and linear transfer 
functions were used at the hidden and output neurons.  
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3.7 Selection of ANN structure and optimization  
 

A three-layered MLP back propagation neural network with tangent sigmoid (tansig) in 
hidden layer and a purelin transfer function at output layer were used. The numbers of 
inputs were five as described in the section 3.5 (input data selection). The number of hidden 
neurons was initially determined by trial and error procedure and the comparison of mean 
square error at various hidden neuron was performed. The optimum number of hidden 
neurons is based on the minimum value of mean square error of the training and prediction 
set [26].  Mean square error can be described by a mathematical function and usually it is 
used as the error function. The MSE measures the performance of the network expressed by 
Eq. (1) [26]. 

                                    
N

yyMSE
Ni

NI expi,predi, =

=
−= 2)(

                                               (1) 

where, N is the number of data point, yi, pred is the network prediction, yi, exp is the 
experimental response and i is an index of data. The optimization was done by varying the 
neuron number. Thus by increasing from one to twelve, the MSE was decreased. This was 
possible using the Levenberg–Marquardt backpropagation training algorithm. Hence, 9 
neurons were selected as the optimum number of neurons. The network had one output 
neuron because it was associated with COD removal only. Therefore, the network 
architecture containing five input neurons, nine hidden neurons and one output neuron can 
be denoted (Fig. 5). 
 

 
Fig. 5. The optimized artificial neural network structure 

 
3.8 Testing and validation of the model 

 
Data obtained from observations during the experimental study were normalized and 
thereafter feed to the optimized artificial neural network in an attempt to test and validate 
the model. The experimental and predicted COD removal values were compared using the 
network for both trained and test data. The number of iterations and MSE values were used 
as the performance criteria and monitored during training. Each input parameter had 
equivalent number of iterations and MSE during the training. Fig. 6 and 7 describe a good 
line of best fit for the data points in both the training and testing phases.  The best linear fit 
for training correlation coefficient (R2) was 0.9950 and for corresponding testing was 
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0.9994 with a MSE of 0.000046 when 9 neurons were applied to the ANN structure (Fig. 
8). Predicted and experimental values for training and testing phases (Fig. 9 and 10). The 
values were in close agreement with little variations as shown in the COD removal for the 
predicted and experimental testing data (Table 1).  Similar results have been reported for 
prediction of effluent TOC from an activated sludge process [26] effluent volatile 
suspended solids and methane yield in sludge digestion [44] and for BOD and suspended 
solids removal in wastewater treatment [43].   
 

 
Fig. 6. Predicted vs. experimental data points during training 

 

     
Fig. 7. Predicted vs. experimental data points during testing 
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Fig. 8. Mean square error for optimum neurons 

 
Fig. 9. COD removal for predicted and experimental data during training 
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Fig. 10. COD removal for predicted and experimental data during testing 

 
 

Table 1. Experimental and predicted values for COD removal using five model input variables during 
testing phase 

 Input Variables COD Removal (%) 

No. of 
Observ. 

FeGAC 
dose 

Time pH Pesticide 
conc. 

H2O2 
conc. 

Exp. Pred. 

1 5 10 3 400 200 73.63 73.63 

2 5 30 3 400 200 75.84 75.77 

3 5 60 3 400 200 76.81 77.46 

4 5 10 3 400 300 70.53 70.53 

5 5 30 3 400 300 73.19 73.19 

6 5 60 3 400 300 74.16 74.04 

7 3 10 5 400 100 86.73 86.73 

8 3 30 5 400 100 92.74 92.75 

9 3 60 5 400 100 96.19 96.19 
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10 3 10 5 800 100 82.31 82.31 

11 3 30 5 800 100 87.04 87.04 

12 3 60 5 800 100 93.13 93.13 

13 3 10 5 1200 100 78.25 78.25 

14 3 30 2 1200 100 84.88 84.88 

15 3 60 2 1200 100 90.78 90.78 

16 5 10 2 400 100 70.56 70.36 

17 5 30 3 400 100 76.93 77.21 

18 5 60 3 400 100 84.12 84.03 

19 5 10 3 400 100 86.73 87.15 

20 5 30 4 400 100 92.74 92.00 

21 5 60 4 400 100 96.19 96.54 

22 5 10 4 400 100 67.55 67.36 

23 5 30 6 400 100 72.15 72.64 

24 5 60 6 400 100 80.58 80.23 

25 5 10 6 400 100 63.19 63.11 

26 5 30 8 400 100 70.98 71.03 

27 5 60 8 400 100 76.03 76.10 

28 5 10 8 400 100 58.87 58.91 

29 5 30 8 400 100 65.94 65.87 

30 5 60 8 400 100 71.29 71.31 

 
3.9 Sensitivity analysis  

The relative importance of the data of the input variables on the output variable was 
evaluated on the basis of the neural net weight matrix. These weights are analogous to 
synapse strengths between the axons and dendrites in typical biological neurons. Thus, each 
weight is able to decide what portion or part of the entire incoming signal to transmit into 
the neuron’s body [41]. An equation based on partitioning of connection weights has been 
proposed by Garson [45] in Eq. 2. 
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where, Ij is the relative importance of the jth input variable on output variable, Ni and Nh are 
the number of input and hidden-neurons, respectively, W is connection weights, the 
superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and output layers, respectively and 
subscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and output neurons, respectively. Kasiri et 
al. [46] have used this equation to evaluate the relative importance of the input variables on 
colour removal from dye solution by the photo-Fenton process. They found that among the 
input variables studied, initial concentration of H2O2 with a relative importance of 48.89% 
was the most influential parameter. Table 2 shows the weights between the artificial 
neurons produced by the ANN model used in this work. Table 3 indicates the relative 
importance of the input variables calculated by Eq. (2). All variables had varying degree of 
effect on pesticide degradation in terms of COD removal. The FeGAC dose was the most 
influential parameter with relative importance of 25.33% and was closely followed by H2O2 
dose with 20.88%. Others were time 19.11%, pH 17.52% and pesticide concentration 
17.20%. The pesticide degradation in terms of COD removal agrees well with the 
sensitivity analysis using Garson’s equation. 
 

Table 2. Weight matrix, weights between input and hidden layers (IW) and weights between hidden 
and output layers (LW) 

 
Hidden 
neurons 

hidden and output layers   

LW Output (IW) Input Variables 

 FeGAC 
dose 

Time pH Pesticide 
conc. 

H2O2 
conc. 

COD Removal 

1 0.8822 18.4423 -14.8835 7.0716 -9.4230 -2.2235 
2 -30.4677 4.6959 8.0149 1.8914 0.8725 23.4970 
3 -0.5347 4.3721 -4.0547 9.6229 -2.8131 5.6285 
4 -0.4456 0.2298 -1.1318 7.9803 5.5135 31.2896 
5 -5.1542 -19.0251 -12.6388 5.1403 1.2278 28.7780 
6 1.2890 -0.1664 3.1365 -1.6466 -6.3421 33.2929 
7 -3.1190 25.7100 -10.1029 -3.4215 -9.4206 24.0238 
8 -74.9063 -81.2668 1.0315 -11.3778 -2.2434 -5.4806 
9 7.6741 0.6914 -0.7206 0.3638 -0.9746 24.2266 
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where, Ij is the relative importance of the jth input variable on output variable, Ni and Nh are 
the number of input and hidden-neurons, respectively, W is connection weights, the 
superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and output layers, respectively and 
subscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and output neurons, respectively. Kasiri et 
al. [46] have used this equation to evaluate the relative importance of the input variables on 
colour removal from dye solution by the photo-Fenton process. They found that among the 
input variables studied, initial concentration of H2O2 with a relative importance of 48.89% 
was the most influential parameter. Table 2 shows the weights between the artificial 
neurons produced by the ANN model used in this work. Table 3 indicates the relative 
importance of the input variables calculated by Eq. (2). All variables had varying degree of 
effect on pesticide degradation in terms of COD removal. The FeGAC dose was the most 
influential parameter with relative importance of 25.33% and was closely followed by H2O2 
dose with 20.88%. Others were time 19.11%, pH 17.52% and pesticide concentration 
17.20%. The pesticide degradation in terms of COD removal agrees well with the 
sensitivity analysis using Garson’s equation. 
 

Table 2. Weight matrix, weights between input and hidden layers (IW) and weights between hidden 
and output layers (LW) 

 
Hidden 
neurons 

hidden and output layers   

LW Output (IW) Input Variables 

 FeGAC 
dose 

Time pH Pesticide 
conc. 

H2O2 
conc. 

COD Removal 

1 0.8822 18.4423 -14.8835 7.0716 -9.4230 -2.2235 
2 -30.4677 4.6959 8.0149 1.8914 0.8725 23.4970 
3 -0.5347 4.3721 -4.0547 9.6229 -2.8131 5.6285 
4 -0.4456 0.2298 -1.1318 7.9803 5.5135 31.2896 
5 -5.1542 -19.0251 -12.6388 5.1403 1.2278 28.7780 
6 1.2890 -0.1664 3.1365 -1.6466 -6.3421 33.2929 
7 -3.1190 25.7100 -10.1029 -3.4215 -9.4206 24.0238 
8 -74.9063 -81.2668 1.0315 -11.3778 -2.2434 -5.4806 
9 7.6741 0.6914 -0.7206 0.3638 -0.9746 24.2266 

 

 

 

Table 3. Sensitivity analysis showing relative importance of input variables 

Input Variables Importance (%) 

FeGAC dose 25.33 
H2O2 conc 20.84 

Time 19.11 
pH 17.52 

Pesticide Conc. 17.20 
Total 100 

 
4 Conclusion 
 
The ANN modeling for predicting COD removal from pesticide aqueous solution by the 
FeGAC/H2O2 process was feasible using a multilayer perceptron neural network. The data 
collected from the laboratory had high accuracy with a minimum MSE of 0.000046 using 
Levenberg–Marquardt backpropagation training algorithm for training and tangent sigmoid 
and linear transfer functions with 5 inputs, 9 hidden and, 1 output neuron at the hidden and 
output layers, respectively. The predicted results were in agreement with the experimental 
results with correlation coefficient (R2) of 0.9994. The sensitivity analysis showed that all 
variables (FeGAC, H2O2, pH, time and pesticide concentration) have an effect on pesticide 
degradation, but FeGAC dose was the most influential parameter with relative importance 
of 25.33%. The ANN modeling can therefore be used to predict COD removal from 
combined chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution by 
the FeGAC/H2O2 process.  
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