
Mathematical Modelling of One-Dimensional 
Overland Flow on a Porous Surface 

Ai Sher Tah1, How Tion Puay1* and Nor Azazi Zakaria1  

1River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia, Seri 
Ampangan, 14300 Nibong Tebal, Penang, Malaysia. 

Abstract. Due to rapid urbanization, surface water drainage systems are 
designed to perform as natural drainage acting as water storage areas that 
allow infiltration and evaporation and to solve issues caused by traditional 
drainage system As there is an increase of attention on Sustainable Urban 
Drainage system (SuDs) to manage storm water, a simple yet efficient 
numerical model for flow over porous media is needed. The purpose of this 
research is to develop a numerical model for the simulation of flow over 
porous media. The model solves the unsteady one-dimensional Saint-Venant 
equation for the surface flow. The advection term in the momentum equation 
is solved using the Constrained Interpolation Profile (CIP) scheme which is 
of the third order accuracy. Averaged infiltration rate is estimated from the 
physical model experiment. The model is then used to simulate dam-break 
flow over porous bed and the result is verified against the experiment. The 
author found that the numerical model performed satisfactorily in terms of 
surface flow profile and the loss of total fluid volume through infiltration.   

1 Introduction 
Sustainable Urban Drainage System (SuDs) is surface water drainage schemes designed to 
perform as a natural drainage overcoming the rapid development of Urbanisation.  SuDS 
provide areas to store water in natural flow allowing infiltration to ground water or 
evaporation process to be happening on the surface water which will be a better way to solve 
issues caused by traditional drainage system [1].  

SuDs that allow infiltration of surface water to the subsurface can help in attenuation 
of surface water. To prevent ground stability hazards and deterioration of groundwater 
quality, it is important to understand the mechanism of surface water infiltrate to the 
subsurface [2].  

In Today’s World, water resource management is becoming the main source of concern 
due to the extensive urbanization and climate changes. With technology, computer models 
with innovative approaches are required to design and implement Sustainable Urban 
Drainage System (SuDs) to optimized and meet the environmental and economic 
preconditions [3]. 

In this study, a mathematical model is developed using one-dimensional depth-
averaged with higher order scheme to simulate flow over porous media, where porous media 
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is used to represent the subsurface condition. To increase the accuracy of the numerical 
model, a third order numerical scheme, i.e. Constrained Interpolation Profile (CIP) [4] scheme is 
applied in this model to solve the advection term in the momentum equation. The numerical 
model is first verified against the one-dimensional dam break problem of perfect fluid. The 
numerical model is then used to simulate flow over porous media, by releasing a finite 
volume of water retained behind a gate onto porous bed. The infiltration rate is determined 
experimentally and used in the numerical model. The performance of the numerical model is 
validated against experimental results in terms of the reproduction of water surface profile. 

2 Numerical model 

2.1 Governing equations 

The governing equations of the numerical model consist of the depth-averaged continuity 
and momentum equations as such, 
Continuity Equation: 
 𝜕𝜕ℎ

𝜕𝜕𝜕𝜕 + 𝑢𝑢
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 = −ℎ

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝑞𝑞𝑙𝑙
𝐵𝐵   (1) 

Momentum Equation: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑢𝑢

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑔𝑔

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 − 𝑔𝑔𝑛𝑛

2 𝜕𝜕|𝜕𝜕|

ℎ
4
3

 (2) 

Here, 𝑢𝑢 is the depth averaged velocity, ℎ is the depth of flow, 𝑞𝑞𝑙𝑙 is the rate of infiltration, 𝐵𝐵 
is width of the channel, 𝑛𝑛 is Manning’s coefficient of roughness, and  𝑔𝑔 is the gravitational 
acceleration. 

2.2 Numerical algorithm 

Finite difference method is used based on the staggered mesh system shown in Figure 1. The 
governing equations are solved in two steps using the time-splitting method. In the first step, 
the advection terms in the continuity and momentum equations are solved using the CIP 
scheme as follows,  
 
Step 1: -  
Continuity Equation:  
 

 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 + 𝑢𝑢

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 = 0              ℎ

𝑛𝑛 𝐶𝐶𝐶𝐶𝐶𝐶→ ℎ∗  (3) 
Momentum Equation: 
 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑢𝑢

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0              𝑢𝑢

𝑛𝑛 𝐶𝐶𝐶𝐶𝐶𝐶→ 𝑢𝑢∗  (4) 
 
The initial values ℎ𝑛𝑛 and 𝑢𝑢𝑛𝑛 are updated to temporary values of ℎ∗and 𝑢𝑢∗after solving the 
advection term with CIP scheme. 
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Fig. 1. Staggered mesh system diagram 
 
Step 2: -  
 
The remaining non-advection term in the continuity and momentum equation can be 
expressed as follows by using the temporary value of ℎ∗and 𝑢𝑢∗. 
 
Continuity Equation:  

 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 = −ℎ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 −
𝑞𝑞𝑙𝑙
𝐵𝐵 ⇒ ℎ𝑖𝑖𝑛𝑛+1−ℎ𝑖𝑖∗

∆𝜕𝜕 = −ℎ∗ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑛𝑛+1

− (𝑞𝑞𝑙𝑙𝐵𝐵)
𝑛𝑛

(5)
Momentum Equation: 
 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑔𝑔 𝜕𝜕ℎ

𝜕𝜕𝜕𝜕 − 𝑔𝑔𝑛𝑛2 𝜕𝜕|𝜕𝜕|

ℎ
4
3
⇒ 𝜕𝜕𝑖𝑖𝑛𝑛+1−𝜕𝜕𝑖𝑖∗

∆𝜕𝜕 = −𝑔𝑔 (𝜕𝜕ℎ𝜕𝜕𝜕𝜕)
𝑛𝑛+1

𝑔𝑔𝑛𝑛2 𝜕𝜕∗|𝜕𝜕∗|

ℎ∗
4
3

(6)

Based on Eq. (6), an initial guess value �̃�𝑢 can be established as follows, 
 

 �̃�𝜕𝑖𝑖−𝜕𝜕𝑖𝑖∗
∆𝜕𝜕 = −𝑔𝑔 (𝜕𝜕ℎ𝜕𝜕𝜕𝜕)

∗
𝑔𝑔𝑛𝑛2 𝜕𝜕∗|𝜕𝜕∗|

ℎ∗
4
3

 (7) 

Subtracting Eq. 7  from Eq. 6 yields, 
 

 𝜕𝜕𝑖𝑖𝑛𝑛+1−�̃�𝜕𝑖𝑖
∆𝜕𝜕 = −𝑔𝑔 [(𝜕𝜕ℎ𝜕𝜕𝜕𝜕)

𝑛𝑛+1
− (𝜕𝜕ℎ𝜕𝜕𝜕𝜕)

∗
] = −𝑔𝑔 𝜕𝜕

𝜕𝜕𝜕𝜕 (𝛿𝛿ℎ) (8) 
Where,  
 
 𝛿𝛿ℎ = ℎ𝑛𝑛+1 − ℎ∗ (9) 
Therefore, from Eq. (8). 
 

 𝑢𝑢𝑖𝑖𝑛𝑛+1 = �̃�𝑢𝑖𝑖 − 𝑔𝑔∆𝑡𝑡 𝜕𝜕
𝜕𝜕𝜕𝜕 (𝛿𝛿ℎ) (10) 

Differentiating Eq.(10) with respect to x yields, 
 

 𝜕𝜕𝜕𝜕𝑖𝑖𝑛𝑛+1

𝜕𝜕𝜕𝜕 = 𝜕𝜕�̃�𝜕𝑖𝑖
𝜕𝜕𝜕𝜕 − 𝑔𝑔∆𝑡𝑡 𝜕𝜕2

𝜕𝜕𝜕𝜕2 (𝛿𝛿ℎ) (11) 
By substituting Eq. (11) into Eq. (5), the following Poisson equation can be derived. 

 

 𝛿𝛿ℎ𝑖𝑖
∆𝜕𝜕 = −ℎ∗ [𝜕𝜕�̃�𝜕𝑖𝑖𝜕𝜕𝜕𝜕 − 𝑔𝑔∆𝑡𝑡 𝜕𝜕2

𝜕𝜕𝜕𝜕2 (𝛿𝛿ℎ)] − (𝑞𝑞𝑙𝑙𝐵𝐵)
𝑛𝑛

 (12) 
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The Poisson equation in Eq.12 is solved with SOR (Successive Over Relaxation) method for 
𝛿𝛿ℎ. 
 
Finally, the new value at the next time step, ℎ𝑛𝑛+1 and  𝑢𝑢𝑛𝑛+1can be updated based on Eq.(9) 
and Eq.(10) as follows,. 
 
                                                       ℎ𝑛𝑛+1 = ℎ∗ + 𝛿𝛿ℎ (13) 

𝑢𝑢𝑖𝑖𝑛𝑛+1 = �̃�𝑢𝑖𝑖 − 𝑔𝑔∆𝑡𝑡 𝜕𝜕
𝜕𝜕𝜕𝜕 (𝛿𝛿ℎ) 

(14)
 

2.3 Verification of numerical model 

The numerical model is verified by simulating the release of a finite volume of water on an 
initially dry bed (or more commonly referred to as the dam-break flow model). The 
simulation result is compared to the analytical solution which was derived by Ritter [5].  The 
Ritter solution that can examine the numerical accuracy of the depth-averaged model is 
widely used to check the numerical solutions of the shallow water Equations (SWE) [6]. 
Figure 3 shows good agreement between the Ritter’s solutions and the numerical result in 
terms of the water surface profile. 
 

  

Fig. 2. Analytical and numerical solution for dam break flow over dry bed condition at time, t=0.70s 
 

2.4 Simulation of flow over porous media 

The dam-break flow over porous media shown in Fig.2 is simulated in the numerical model. 
Simulation of a dam break flow problem was carried out to check the numerical simulation 
stability and accuracy of the model with higher-order schemes under the inclusion of 
infiltration in the porous zone. The infiltration rate used in the numerical model is evaluated 
from the experiment. The simulation conditons for the numerical model are shown in Table 
1. 
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Fig. 3. Schematic diagram of dam break flow over media 
 

Table 1. Simulation conditions table. 

Parameters Case 1 Case 2 Case 3 Case 4 
dx, [m] 0.01 0.01 0.01 0.01 
dt, [s] 1.0x10-6 1.0x10-6 1.0x10-6 1.0x10-6 
h0, [m] 0.05 0.10 0.05 0.10 
b0, [m] 0.3 0.3 0.3 0.3 

Bead size, d [mm] 6 6 10 10 
Infiltration rate, [m2/s] 0.0099 0.0204 0.0105 0.0258 

Manning’s roughness  
coefficient, n  0.05 0.05 0.05 0.05 

3 Physical model experiment 

3.1 Experimental setup 

A rectangular tank with the size of width (b0) = 0.30m and depth = 0.20m are used to simulate 
dam-break flow over porous media with two different water depth (h0), which are 0.05m and 
0.10m. The porous zone is made up of single size glass beads with size of d=6 mm and d=10 
mm. During the experiment, the instantaneous release of the water column is carried out by 
pulling up the gate in fast motion. Motion video of the dam-break flow is recorded and used 
to determine the flow profile and infiltration rate. The experiment conditions are summarized 
in Table 2. Meanwhile, the infiltration rate is determined as the slope of the linear line of the 
accumulated volume losses vs time, as shown in Fig. 4. The accumulated volume loss is 
determined graphically using the motion video frame.  

 
Table 2. Experiment table. 

Experiment d(mm) b0(m) h0(m) 
EXP 6-05 6 0.30 0.05 
EXP 6-10 6 0.30 0.10 

EXP 10-05 10 0.30 0.05 
EXP 10-10 10 0.30 0.10 

t=0

h0

Impermeable zone Permeable zone((porous bed)

b0
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Fig. 4. Graph of accumulated volume losses. 

4 Result and discussion 
The result of the numerical simulation of the dam-break flow over porous media is compared 
against the experiment results as shown from Figure 5 to Figure 7 (𝑑𝑑 = 6𝑚𝑚𝑚𝑚, and ℎ𝑜𝑜 =
0.05𝑚𝑚),  from Figure 8 to Figure 10 (𝑑𝑑 = 6𝑚𝑚𝑚𝑚, and ℎ𝑜𝑜 = 0.10𝑚𝑚), from Figure 11 to Figure 
13 (𝑑𝑑 = 10𝑚𝑚𝑚𝑚, and ℎ𝑜𝑜 = 0.05𝑚𝑚) and from Figure 14 to Figure 16 (𝑑𝑑 = 10𝑚𝑚𝑚𝑚, and ℎ𝑜𝑜 =
0.10𝑚𝑚). Overall, the water surface profile produced by the numerical model agrees well with 
the experiment counterpart. This is true for both bead sizes of 6𝑚𝑚𝑚𝑚 and 10𝑚𝑚𝑚𝑚 under all 
cases. However, the water surface profile in the experiment at the initial stage (after the gate 
is pulled up) is different from the numerical result especially when in the case of higher initial 
water depth (ℎ𝑜𝑜 = 0.10𝑚𝑚)as can be seen in Figure 8 to Figure 10 and Figure 14 to Figure 
16. This due to the effect of gate pulling, which is more noticeable for higher initial water 
depth behind the gate. Under same initial water depth of  ℎ𝑜𝑜 = 0.10𝑚𝑚, the effect of gate 
pulling is more obvious for bead size 𝑑𝑑 = 6𝑚𝑚𝑚𝑚 as shown in Figure 8 (case EXP 6-10) and 
less for bead size 𝑑𝑑 = 10𝑚𝑚𝑚𝑚  as shown in Figure 14 (case EXP 10-10). Due to lower 
infiltration rate for bead size 𝑑𝑑 = 6𝑚𝑚𝑚𝑚 compared to bead size 𝑑𝑑 = 10𝑚𝑚𝑚𝑚, the surface of the 
water at location near the gate recedes slower than the case with bead size 𝑑𝑑 = 10𝑚𝑚𝑚𝑚 and 
therefore the area of the water subjected to gate friction and pulling effect is larger.    
As can been seen in Figure 5 to Figure 16, the numerical model agrees very well with the 
experiment result for the reproduction of surface water profile between the receding upstream 
travelling wave and the upstream wall. The forward propagating front wave which is 
travelling on porous surface also shows good agreement with experiment results in in terms 
of propagation speed and surface water profile in the porous bed region even though the 
average infiltration rate (which was obtained from the experiment) is used in the numerical 
model.  
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Fig. 5. Numerical simulation (dotted) and experiment with 6mm beads,  ℎ𝑜𝑜 =0.05m and t= 0.2s. 

 

 
Fig. 6. Numerical simulation (dotted) and experiment with 6mm beads,  ℎ𝑜𝑜 =0.05m and t= 0.4s. 
 

 
Fig. 7. Numerical simulation (dotted) and experiment with 6mm beads,  ℎ𝑜𝑜 =0.05m and t= 0.6s. 
 

 
Fig. 8. Numerical simulation (dotted) and experiment with 6mm beads,  ℎ𝑜𝑜 =0.10m and t= 0.2s. 
 

7

E3S Web of Conferences 65, 07002 (2018) https://doi.org/10.1051/e3sconf/20186507002
ICCEE 2018



 
Fig. 9. Numerical simulation (dotted) and experiment with 6mm beads,  ℎ𝑜𝑜 =0.10m and t= 0.4s. 
 

 
Fig. 10. Numerical simulation (dotted) and experiment with 6mm beads,  ℎ𝑜𝑜 =0.10m and t= 0.6s. 
 

 
Fig. 11. Numerical simulation (dotted) and experiment with 10mm beads,  ℎ𝑜𝑜 =0.05m and t= 0.2s. 
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Fig. 9. Numerical simulation (dotted) and experiment with 6mm beads,  ℎ𝑜𝑜 =0.10m and t= 0.4s. 
 

 
Fig. 10. Numerical simulation (dotted) and experiment with 6mm beads,  ℎ𝑜𝑜 =0.10m and t= 0.6s. 
 

 
Fig. 11. Numerical simulation (dotted) and experiment with 10mm beads,  ℎ𝑜𝑜 =0.05m and t= 0.2s. 
 
 
 

 
Fig. 12. Numerical simulation (dotted) and experiment with 10mm beads,  ℎ𝑜𝑜 =0.05m and t= 0.4s. 
 

 
Fig. 13. Numerical simulation (dotted) and experiment with 10mm beads,  ℎ𝑜𝑜 =0.05m and t= 0.6s. 
 

 
Fig. 14. Numerical simulation (dotted) and experiment with 10mm beads,  ℎ𝑜𝑜 =0.10m and t= 0.2s. 
 

 
Fig. 15. Numerical simulation (dotted) and experiment with 10mm beads,  ℎ𝑜𝑜 =0.10m and t= 0.4s. 
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Fig. 16. Numerical simulation (dotted) and experiment with 10mm beads,  ℎ𝑜𝑜 =0.10m and t= 0.6s. 

5 Conclusion 
A higher order one-dimensional depth average model is developed in this study to simulate 
the flow over porous media. It was shown that the accuracy of the numerical model can be 
improved by using the third order Constrained Interpolation Profile (CIP) scheme to solve the 
advection terms in the of depth-averaged continuity and momentum equations. By using the 
averaged infiltration rate, the numerical model was able to produce satisfactory result when 
compared to the experiment data, especially in terms of the reproduction of the overall flow 
profile and front propagation speed. The one-dimensional model is useful for the simulation 
of one-dimensional flow in swale system. It can also be easily extended into a two-
dimensional model for wider application. 
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