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Abstract. In the past, the CN was determined through SCS handbook. In 
order to determine runoff prediction using SCS-CN model, selection of CN 
is important. However, the conventional CN methodology with 
inappropriate CN selection often produces inconsistent runoff estimation. 
Thus, the new direct curve number derivation technique based on rainfall-
runoff datasets with supervised numerical optimization technique under the 
guide of inferential statistics was developed to improve the accuracy of 
surface runoff prediction. Furthermore, the two decimal point CN system 
was proposed in this study. The optimum CN of Melana site is 90.45 at 
alpha 0.01 with BCa 99 % confidence interval range from 90.45 to 95.12. 
The regional specific calibrated SCS-CN model with two decimal point CN 
derivation technique is out-performed the runoff prediction of conventional 
SCS-CN model and the asymptotic curve number fitting method.  

1 Introduction 
Recent year, due to rapid urbanization, the flooding scenarios occur more frequently in 
main city of Malaysia thus the rainfall-runoff model plays an important role in planning and 
managing the water resource system and flood control. There are various types of rainfall-
runoff models available. Since 1954, the Soil Conservation Service Curve Number (SCS-
CN) is one of the most popular rainfall-runoff model to predict direct runoff amount from 
agricultural site and then extended to urban watershed due to its simplicity. Nowadays, the 
SCS-CN model is incorporated into various software such as ArcGIS [15, 54, 55], remote 
sensing [15, 29, 35] and SWAT [24, 41]. The SCS-CN method also adopted by Malaysian 
government agencies and used as teaching purpose in engineering hydrology textbook.  

Unfortunately, the accuracy and consistency of surface runoff prediction by using the 
curve number method derived from SCS had been questioned by some hydrologist from 
various countries [1, 8-9, 13, 16-18, 25, 27, 30, 33, 37-39, 50, 53, 56]. There was a study 
proved that by using tabulated CN values had a tendency to over-predict runoff amount 
[37]. Furthermore, a study in South Korea concluded that by referring the tabulated CN 
unable obtained satisfied runoff estimation [24]. The tabulated CN groups the effect of land 
use and land cover condition, hydrologic soil group (HSG), and antecedent runoff condition 
(ARC) based on watershed characteristics into a single coefficient [3, 42-45, 51]. As a 
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result, CN is the most important parameter in SCS-CN model. Wrong selection of CN will 
lead to inappropriate runoff prediction [17]. In 1954, the SCS-CN model was used CN 
handbook to search the suitable CN value to represent the watershed. The CN value was 
then substituted into the CN formula as shown in Eq. 1 to find the maximum potential water 
retention of watershed (S). By fixing λ=0.2 with S value and event rainfall (P) substituted 
into the base SCS-CN model as shown in Eq. 2, the surface runoff (Q) could be determined. 
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Where, 
CN = Curve Number Value 
Error! Reference source not found.  = Runoff depth (mm) 
P  = Rainfall depth (mm) 
Ia  = the initial abstraction (mm) 
S  = maximum potential water retention of a watershed (mm) 
 

Basically, the CN is dimensionless watershed index which ranged from 0 to 100 to 
represent a watershed from high infiltration to fully permeable respectively. All the tabulate 
CN and charts of CN available in the Soil Conservation Service (SCS) National 
Engineering Handbook Section 4: Hydrology (NEH-4) [42-45] for agricultural areas, as 
well as Technical Release 55 (TR-55) [51] and applied in Technical Release 20 (TR-20) 
software for small and big urban catchments respectively were derived based on 
approximately 199 experimental watersheds in United States of America (USA) that ranged 
in size from 0.0971 ha to 18,600 ha which were located at 23 locations nationwide, using 
measurements of annual maximum rainfall and runoff collected between 1928 and 1954 
and thousands of infiltrometer tests [49]. However, the information about the initial 
development of the curve number method has not been preserved [19, 50, 51]. 

The NRCS handbook [42-45] was created based on the hydrological condition and the 
soil group type in United States of America (USA) thus the soil condition and hydrological 
situation in Malaysia might not be the same as USA. There is a possibility to obtain 
unsuitable soil group type for a particulate watershed in Malaysia and thus produces 
unrealistic runoff volume. As a result, the SCS-CN practitioners should not blindly adopted 
the CN values in NRCS handbook [42-45], TR-55 [51] and TR-20 software. Although the 
SCS-CN model had integrated with remote sensing (RS) and geological information 
sensing (GIS) to produce a high resolution remote sensing imagery, the number of land 
cover types described in NEH-4 [42-45], TR-55 [51] and applied in TR-20 software was 
still so enormous that it was hard to classify into appropriate CN categories accurately [6]. 
As a result, Hawkins (1998) and Canters et al. (2006) [4, 20] suggested that CN tables 
should only be used as a guideline, and the actual CN should be determined based on local 
and regional data. Many researchers developed the CN calculation methods by 
incorporating the land cover information and the original CN in TR-55 [14] but the CN still 
unable to represent the regional specific watershed. In order to improve the surface runoff 
prediction result, most of the SCS practitioners practiced a common approach by “trial and 
error” to tweak the CN based on observed data without any statistical justification. By using 
“trial and error” method cannot obtain a consistent CN to represent particular watershed. 
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Fig. 1. Runoff Curve Number for Urban Area  
Source: Table 2.2a. USDA, 1986, pp 2-5 [51]) 

 

 
Fig. 2. Chart of Rainfall versus Direct Runoff and Curve Number.  
Source: Figure 2.1. USDA, 1986, pp 2-2 [51]) 
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Recent decades, most of the research studies used the recorded daily rainfall-runoff (P-
Q) data pairs from local or nearby watershed to derive the local CN value [17, 21, 22, 46-
47]. There was few approaches for CN determination from observed P–Q data had been 
reported such as least-squares method (LSM) [50] and asymptotic fitting method (AFM) 
[17, 19]. The asymptotic fitting method created by Professor Hawkins was based on 
frequency matching concept. The rainfall-runoff data were sorted separately in descending 
order. The asymptotic fitting method basically classified into three different response 
behavior which was standard behavior, complacent behavior and violent behavior. For 
complacent behavior, there was no constant CN can be obtained. The asymptotic fitting 
method had been applied in some earlier research studies [2, 8, 34, 40, 49] In 2014, there 
was a study in Sicily by D’Asaro et al (2012) [8] discovered that the CN values found by 
the asymptotic fitting and least-squares fitting methods were all lower than the tabulated 
CN in handbook table [8]. In summary, there are two issues to be addressed in this article as 
stated below: 
Issue 1: Limitation of NRCS handbook in choosing an exact curve number. 
Issue 2: The regional specific curve number should be rounded or not. 

As a result, in this study will present a new approach to derive regional specific CN 
based on direct P-Q data sets under the guide of non-parametric inferential statistics and a 
new CN system with at least two decimal point is proposed to solve all issues above. 

2 Data and methodology 

2.1 Study site  
In this study, Melana watershed is chosen to demonstrate the regional specific urban SCS 
model and new CN system. Melana watershed is located at Johor, Malaysia between 1°30'N 
to 1°35'N and 103°35'E to 103°39'E as shown in Fig 3 [5]. The total area of whole Melana 
watershed is 21.12 km². There are total of twenty-seven data sets of rainfall-runoff event 
between July 2004 to October 2004 were adopted from Chan (2005) [5] as shown in Table 
1 [5]. Due to rapid urbanization in Melana watershed, there was only 20 % of Melana 
watershed was urbanized and after seven years later, more than 60 % of the area would be 
residential area [32]. As a result, in order to prevent the rainfall-runoff data sets affected by 
land cover land use change in Melana watershed due to rapid development, there was only 
a short period of rainfall-runoff data pairs were used in this study. 
 

 
Fig. 3. Location of Melana Watershed (Source: Chan (2005) [5]) 
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Table 1. Daily Rainfall-Runoff Event Data of Melana Watershed selected from July to October 2004.  
(Source: Chan (2005) [5]) 

No. Daily Rainfall 
(mm) 

Daily Runoff 
(mm) 

No. Daily Rainfall 
(mm) 

Daily Runoff 
(mm) 

1 0.054 0.020 15 7.918 1.300 

2 0.192 0.022 16 8.505 1.194 

3 0.480 0.029 17 16.976 3.055 

4 1.337 0.042 18 19.328 3.284 

5 1.501 0.314 19 22.246 4.253 

6 2.041 0.112 20 29.371 9.062 

7 2.067 0.098 21 33.404 6.131 

8 2.129 0.133 22 33.417 7.844 

9 2.634 0.198 23 34.665 6.875 

10 3.825 0.490 24 36.272 6.922 

11 3.939 0.372 25 40.804 11.320 

12 4.183 0.420 26 52.373 13.127 

13 4.926 0.270 27 61.643 36.212 

14 6.948 0.891 

2.2 Methodology  

In this study, the non-parametric inferential statistics Bootstrapping technique, Bias 
corrected and accelerated (BCa) procedure with 2,000 sampling [11-12] was conducted by 
the help of supervised numerical optimisation technique to calibrate the base SCS-CN 
model and derived the regional specific CN for Melana watershed through the P-Q datasets 
directly. The Bootstrapping BCa statistics was chosen due to its robustness nature and the 
inferential ability via its confidence interval [7, 10, 52]. At the same study site, the Null 
hypothesis had been set up and all had been rejected in the previous research study in 2015 
and 2017 by Ling [26-28] and also concluded the lambda value should not equal to 0.2. 
Furthermore, the 99 % confident interval (CI) range for λ and S were found out in previous 
publication too. In this research results having the same conclusion as previous research 
study [26-28], the lambda value fixed at 0.2 being rejected due to 0.2 was not in the λ 
confident interval range of (0.0004, 0.0005). The regional specific equivalent CN0.2 value 
for Melana site could be derived by using CN formula (CN=25,400/ (S+254)) which was 
proposed by SCS for CN comparison [19, 23]. The Sλ needed to correlate using general Sλ 
formula derived by Ling (2017) [27] as shown in Eq. 3 to substitute back into the CN 
formula. 
 

                    (3) 

 
Throughout this study, the derived CN value and new CN system will be created for Melana 
watershed. 
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2.3 Runoff Model Assessment 

There are three types runoff model assessment with formulas as stated below: 
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Q =     Runoff amount (mm) 

n =    Total number of datasets 

E=     Nash-Sutcliffe index 

RSS= Residual sum of squares 

The three runoff model assessment as shown in Eq. 4, Eq. 5 and Eq. 6 are used to 
assess the asymptotic curve number model, calibrated SCS-CN model and conventional 
SCS-CN model. The lower the RSS value, the better the predictive model. Zero value of 
BIAS indicates the predictive model has zero error. For positive BIAS value means the 
predictive model has tendency to over-predict and vice versa. E between 0.0 to 1.0 indicates 
it is a perfect predictive model. When E<0, the predictive model performs worse than using 
the mean value to predict the dataset [31]. 
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The three runoff model assessment as shown in Eq. 4, Eq. 5 and Eq. 6 are used to 
assess the asymptotic curve number model, calibrated SCS-CN model and conventional 
SCS-CN model. The lower the RSS value, the better the predictive model. Zero value of 
BIAS indicates the predictive model has zero error. For positive BIAS value means the 
predictive model has tendency to over-predict and vice versa. E between 0.0 to 1.0 indicates 
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the mean value to predict the dataset [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Result and discussion 

 
Fig. 4. Graph of Runoff Differences of CN in Hydrologic Soil Group of Urban Districts against 
Calibrated CN in term of Volumetric Difference vs Precipitation. 

There are two issues had been proposed to solve as stated in introduction. First of all, the 
CN chosen from tabulated handbook is not sensitive due to a big gap in between CN range. 
The exact CN cannot pick correctly by referring to the NEH-4 handbook [42-45]. However, 
the accurate regional specific CN for Melana watershed can be calculated by using Eq. (1) 
under the guide of inferential statistic to exact decimal. The calculated CN of Melana 
watershed is 90.45 with significant level at alpha 0.01. The CN’s 99 % BCa confident 
interval of Melana watershed is (90.45, 95.12). According to NEH-4 handbook [42-45], the 
CN of urban district with hydrological soil group A is 89 which is out of the obtained 
confident interval range of Melana watershed. Therefore, only soil group B, C and D are 
statistically significant to be considered for Melana watershed. Due to the climate change 
scenario and rapid urbanization posts a challenge to identify a suitable CN for the Melana 
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watershed via tabulated handbook. Therefore, by using NRCS handbook [42-45] to select 
CN has a risk of committing Type II error. Based on the graph in Figure 4, it clearly shows 
that there is uncertainty in runoff volume when the precipitation is changing. When the 
precipitation is less than 12 mm, the CN selected from handbook under urban district for 
Melana site has the tendency to over-predict runoff amount up to 35 thousands m³ and 
under-predict up to 15 thousands m³. When the rainfall amount is more than 12 mm, all the 
runoff volume for CN=84, 92, 94, and 95 will over-predict runoff amount up to 500 
thousands m³. Moreover, Fig. 4 clearly shown that when the CN increases from 85 to 95, 
the runoff over prediction risk is significant and further magnified toward higher rainfall 
depth. As a result, by using NRCS handbook [42-45] having inconsistent runoff prediction. 
 There are some limitations of NEH-4 handbook [42-45]. Often in the tabulated CN 
handbook, there will be sudden jumps in CN choice based on four different hydrologic soil 
groups as shown in Fig 1. Moreover, by referring to the chart in handbook as stated in Fig 
2, the selection of CN is in inches instead of SI unit and with a condition that λ value in 
SCS-CN model must fixed at 0.2. CN was proposed as whole number and still in use until 
today. However, rounding up the CN will cause a huge differences in runoff volume even it 
is just different by one CN class. This proves that CN variation affects the direct runoff 
estimation more than rainfall variability. Figure 5 shows the graph of runoff volumetric 
difference when the calculated CN=90.45 has been round up to 91 and round down to 90. It 
is obviously showed that the CN should not be round up or round down to whole number 
CN. When CN=91, the runoff volume tends to over-predicted up to 300 thousand m³. The 
maximum over-predicted runoff volume is 255 thousands m³ when the CN is 90. Rounding 
the CN causes a large amount of uncertainty runoff volumetric difference in Melana 
watershed. 
 

 
Fig. 5. Graph of Runoff Differences of CN is 90 and 91 against Calibrated CN in term of Volumetric 
Difference vs Precipitation. 
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Fig. 5. Graph of Runoff Differences of CN is 90 and 91 against Calibrated CN in term of Volumetric 
Difference vs Precipitation. 

 
Fig. 7. Graph of Runoff Differences of one decimal point CN against Calibrated CN in term of 
Volumetric Difference vs Precipitation. 

In this study, the new CN system approach with at least two decimal point being 
proposed instead of one decimal point. This is because there is still over-predicted nearly 
273 thousand m³ volumetric difference at rainfall depth of 61.6 mm under CN=90.40 as 
shown in Fig. 7 whereas the volumetric difference for two decimal point CN=90.44 is only 
270 thousand m³ as shown in Fig. 8. When the rainfall amount increase, the runoff volume 
differences also increase. The volumetric difference for two decimal point CN is smaller 
than one decimal point CN. Thus, the CN should be proposed as at least two decimal point. 

 
Fig. 8.  Graph of Runoff Differences of two decimal point CN against Calibrated CN in term of 
Volumetric Difference vs Precipitation. 
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 Nowadays, most of the research studies used asymptotic CN fitting method (AFM) to 
find CN∞ in order to avoid inconsistent runoff prediction based on tabulated CN handbook. 
The CN∞ of Melana site is derived as 81.72 based on a previous research study in 2017 
[26]. The accuracy of asymptotic CN runoff model is benchmark to conventional SCS-CN 
model and calibrated SCS-CN model by using few predictive model as tabulated in Table 2. 
Based on Table 2, it obviously stated that the calibrated model has higher Nash-Sucliffe, 
lower RSS and BIAS almost near to zero. Furthermore, the CN∞ value determined by AFM 
model did not has statistical significant proof at alpha 0.01. 

Table 2. Assessment of Different Runoff Predictive Model. 

 Fig.9 shows the graph of three runoff predictive model against the observe runoff 
amount versus precipitation in Melana watershed. By using the calibrated SCS model, the 
obtained Ia=0.043mm. The minimum observed rainfall amount is 0.054mm. This showed 
that the precipitate is more than initial abstraction, thus there is runoff generate. In the other 
hand, by applying the conventional SCS-CN model, the calculated Ia is 2.971mm. 
According to SCS, any rainfall amount less than Ia then no runoff generate. However, 1/3 
of the rainfall events already violated the SCS constraint. Based on Fig.9 below, when the 
precipitation is less than 0.5 mm, the runoff amount cannot be more than 0.5 mm rainfall 
depth while the predicted runoff depth from conventional SCS-CN and AFM model are 
higher than 0.5 mm rainfall depth. There is a huge different between the predicted runoff 
against the observed runoff depth when the precipitation reaches 61.6 mm. The SCS-CN 
model tends to over-predicted up to 326 thousand m³ runoff (equivalent to 130 Olympic 
size swimming pools) and under-predict up to 6 thousand m³ as compared to calibrated 
SCS-CN model. In the other hand, the AFM model tends to over-predicted up to 69 
thousand m³ runoff (equivalent to 28 Olympic size swimming pools) and under-predict 
nearly 62 thousand m³ (equivalent to 25 Olympic size swimming pools).  

Predictive Model AFM Model  
Calibrated 

Model 
Conventional 
SCS Model 

p value Not Significant 0.01 Not Significant 
E 0.817  0.863  -0.359  
RSS 264.703  198.150  1970.120  
BIAS -0.172  0.187  4.927  
CN0.2 81.72  90.45  94.47  
BCa 99% Confident Interval Range 
of CN0.2 

None [90.45,95.12] None 

Residual: Median  0.618  -0.052  0.473  
(Skewness) Residual  -2.399  -1.731  1.287  
(Kurtosis) Residual 8.395  9.521  0.761  
BCa 99% Confident Interval Range 
of Median Residual 

[-1.043,1.659] [-0.231,-0.008] [-0.065,7.831] 

Standard Deviation of Model error 3.186  2.754  7.111  
Variance (Residual) 10.151  7.584  50.561  
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Fig. 9. Graph of Runoff Amount vs Precipitation in Melana Watershed 

4 Conclusion 
Conclusion, the CN should not select from the NRCS handbook. By using the new CN 
derivation approach with supervised numerical optimization technique under the guide of 
non-parametric inferential statistics can overcome the difficulty of selecting an accurate CN 
from tabulated handbook. Throughout this study, the regional specific calibrated runoff 
predicted model performs better than SCS-CN model and asymptotic curve number fitting 
method. The derived CN of Melana watershed is 90.45 under statistical significant at alpha 
0.01 level. The predicted runoff results from conventional SCS-CN model tend to 326 
thousand m³ which is equivalent to 130 Olympic size swimming pools and under-predict up 
to 6 thousand m³. Lastly, the new two decimal point CN system should be applied instead 
of rounding up the CN. Although the CN value derived from asymptotic CN method is two 
decimal point of CN value, the new CN derivation approach still performs better with the 
proof of higher R value, lower BIAS and lesser RSS are obtained. The CN value determined 
by asymptotic CN method for Melana site is 81.72 which has tendency over-predicted up to 
69 thousand m³ runoff (equivalent to 28 Olympic size swimming pools) and under-predict 
nearly 62 thousand m³ (equivalent to 25 Olympic size swimming pools). 
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