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Abstract. Drought is a damaging natural hazard due to the lack of 
precipitation from the expected amount for a period of time. Mitigations are 
required to reduced its impact. Due to the difficulty in determining the onset 
and offset of droughts, accurate drought forecasting approaches are required 
for drought risk management. Given the growing use of machine learning in 
the field, Wavelet-Boosting Support Vector Regression (W-BS-SVR) was 
proposed for drought forecasting at Langat River Basin, Malaysia. Monthly 
rainfall, mean temperature and evapotranspiration for years 1976 – 2015 
were used to compute Standardized Precipitation Evapotranspiration Index 
(SPEI) in this study, producing SPEI-1, SPEI-3 and SPEI-6. The 1-month 
lead time SPEIs forecasting capability of W-BS-SVR model was compared 
with the Support Vector Regression (SVR) and Boosting-Support Vector 
Regression (BS-SVR) models using Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), coefficient of determination (R2) and Adjusted 
R2. The results demonstrated that W-BS-SVR provides higher accuracy for 
drought prediction in Langat River Basin.  

1 Introduction  
Drought is a damaging natural hazard due to the lack of precipitation from the “normal” or 
expected amount for a period of time, lead to the insufficient water availability to meet the 
human and environmental needs. As stated in The Intergovernmental Panel on Climate 
Change Report on extreme events [1], drought was recognised as extreme climatic events 
and mitigations are necessary to reduce its impacts.  Forecasting and warning facilitation are 
widely known as important aids in managing natural hazards. Similarly, drought forecasting 
is crucial for its risk management and mitigation [2-4]. Compared to raw meteorological data, 
numerically expressed drought indices (DIs) are better in detecting the onsets and offsets of 
droughts [2].  

Along the years, different DIs were introduced to assess the water supply deficit 
corresponding to the length of the precipitation shortage, including the Percent of Normal, 
the Standardized Precipitation Index (SPI) [5], Palmer Drought Severity Index (PDSI) [6], 
Crop Moisture Index (CMI) [7], Streamflow Drought Index (SDI) [8], Standardized 
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Precipitation Evapotranspiration Index (SPEI) [9], etc. Among them, SPEI is a relatively new 
simple multi-scalar drought index developed by [9]. Apart from its simplicity, SPEI also able 
to represent different types of drought due to its multi-scalar characteristic and its 
consideration of both hydrological (precipitation) and ecological (potential 
evapotranspiration) variables.  [9] tested the SPEI based on 11 observations from different 
types of climate, including tropical, monsoon, Mediterranean, semi-arid, continental, cold, 
and oceanic. Hence, tropical country Malaysia is considered suitable for applying the SPEI 
as the drought index to describe the severity of the events. Other than that, studies also 
showed that SPEI is a robust index to monitor and analyse droughts [10-13]. 

Since the forecasting of DIs serves the purpose of recovery planning, mitigation and 
decision-making, fast, accurate and reliable models to forecast lead-time information on the 
future drought occurrence and intensity are required. Drought forecasting using machine 
learning (ML) algorithms is an evolving research area. With the advantages of high flexibility 
and adaptability, they showed remarkable results in many studies over the years [14-18].  
Support Vector Regression (SVR) is a popular ML approach in hydrologic forecasting.  It 
has been used in many studies for drought prediction and papers have shown that SVR is a 
promising tool in drought prediction [19-24]. In addition to the use of ML models, researchers 
also started to produce hybrid models by combining with other techniques, such as ensemble 
and pre-processing technique. According to [25], the boosting ensemble technique can 
improve the performance of a given learning algorithm. A recent study by [4] also showed 
that the boosting technique is suitable for improving the performance of SVR models for the 
prediction of the SPI. Other than that, the use of wavelet transformation to reduce noise and 
produce wavelet coupled ML models have also been researched over the years [19, 26-29]. 
Hence, the improvement of using wavelet in SVR-based models were discussed in this paper.  

This study predicted SPEI-1, SPEI-3 and SPEI-6 by combining boosting technique with 
SVR models. Then, wavelet transformation was used to de-noise the original SPEI series. 
The SPEI was selected because of its ability to represents different time scales of drought. 
The SPEIs were predicted to the lead time of 1-month because 1-month is a usual short-term 
lead time in drought forecasting. Prediction results of this study are useful for the water 
resources management in the basin. 

2 Materials and methods  

2.1 Study area: The Langat River Basin, Malaysia  

Although Malaysia is a tropical country and receives mean annual precipitation of 2,800 mm, 
the rainfall amount and rain day occurrence have large variability. The extremity of rainfall 
intensity and occurrences cause difficulties in water resources management for both urban 
and agricultural use, which generally relies on direct rainwater and rainwater stored in dams. 
Some of the remarkable historical drought events in Malaysia includes 1991 Malacca water 
crisis, 1998 Klang Valley water crisis (El-Nino), and the 2014 Selangor water crisis [30].  
 Given the vulnerability of Malaysia in droughts, Langat River Basin was chosen as the 
study area. It located between Selangor and Negeri Sembilan, within latitudes 2o 40’ 152” to 
3o 16’ 15” and longitudes 101o 19’ 20” to 102o 1’ 10”. It has a total area of approximately 
2,400 km2 and consists of two main dams Langat Dam and Semenyih Dam. These two dams 
are supplying water to the household and the industrial areas, which are Putrajaya, Hulu 
Langat, Kuala Langat, Sepang, Petaling and Cheras. Other than that, there are also active 
agricultural activities at the downstream of the basin, with oil palm plantations coveing an 
area of approximately 847 km2 area. Rainfall station at Pejabat JPS Sg. Manggis (ID: 
s2815001) located at the central of basin downstream, and temperature station at Petaling 
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Jaya (ID: 48648), both with 40 years (1976 - 2015) of data were used to retrieve data as input 
for this study. The rainfall data was collected from the Department of Irrigation and Drainage 
(DID) Malaysia while the temperature data was from the Malaysian Meteorology Department 
(MMD). The locations of the meteorological stations are shown in Fig. 1.  
 

 
Fig. 1. Map of Langat River Basin with the locations of meteorological stations and land use 

2.2 Standardized Precipitation Evapotranspiration Index (SPEI)   

The Standardized Precipitation Evapotranspiration Index (SPEI) was introduced by [9]. SPEI 
The SPEI consists of both multi-scale nature of SPI and evapotranspiration sensitivity of 
PDSI using simple calculation. It has the same advantage with SPI that allows to describe 
droughts on multiple time scales in addition of considering the effects from 
evapotranspiration. In addition, since its concept solely relying on precipitation and 
temperature, not on soil moisture content as is the PDSI, the SPEI is also not badly affected 
by landscape. Hence, the SPEI is widely accepted in drought forecasting as it has a broader 
range of applications than other DIs.  
 SPEI values can be classified into seven categories (Table 1). Normal conditions are 
founded from the combinations of two classes: −0.99 ≤ SPEI ≤ 0 (mild drought) and 0 ≤ SPEI 
≤ 0.99 (slightly wet). SPEI values can be presented in positive or negative, depending on its 
value for greater or less than the mean value, respectively. The magnitude of the SPEI value 
describes the severity of the events. In this study, SPEI-1, SPEI-3 and SPEI-6 were 
constructed and the details on SPEI computation are shown in the work of [9].  
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Table 1. Categories of SPEI  

Moisture Category SPEI 
Extremely Wet 2.00 and above 
Very Wet 1.50 to 1.99 
Moderately Wet 1.00 to 1.49 
Near Normal -0.99 to 0.99 
Moderately Dry -1.00 to -1.49 
Severely Dry -1.50 to -1.99 

Extremely Dry -2.00 and below 

2.3 Support Vector Regression (SVR)  

Support Vector Machine is a category of ML models that can detect the nonlinear 
characteristics of the data. Unlike other Empirical Risk Minimization based learning 
algorithms (eg. ANN) that minimize the error over the training data set (training error), the 
SVM minimizes the model’s generalisation error in high dimensional space, so called 
Structural Risk Minimization [31]. SVMs can be categorized into two types: support vector 
classification (SVC) and support vector regression (SVR). Since the aim of this study is to 
predict SPEI, SVR which describes regression was chosen. 
 All SVR models were developed using ‘fitrsvm’ function in MATLAB, which is 
specialized in building Support Vector Machine in regression. The data was divided into two 
sets: a training set and a validation set. 80% of the data was used as the training set while the 
final 20% was partitioned as validation set.  In the case of the nonlinear regression, an SVM 
uses Radial Basis Function, rbf kernels [32]. Thus, the estimation of parameter “C” and 
epsilon value for rbf kernel were required. The parameter C is responsible for the offsets 
between the model complexity and the degree of deviations (from Epsilon), whereas Epsilon 
determines the width for the fitting of training data [33]. These parameters were selected 
based on the methods suggested in [34]. 

2.4 Boosting-Support Vector Regression (BS-SVR)  

Boosting ensemble technique was adopted in this study to enhance the prediction accuracy 
of SVR models. It is a method which produce sequence of models to improve the 
performance of a given learning algorithm, where each succeeding model focusses on the 
poorly trained cases in the preceding one to generate more accurate results [25]. For the BS-
SVR model, the ‘fitensemble’ function in MATLAB was used to boost the observed SPEI. 
The new learners from ‘fitensemble’ function can be represented by: 

𝑦𝑦𝑛𝑛 − 𝜂𝜂𝜂𝜂(𝑥𝑥𝑛𝑛)        (1) 

where 𝑦𝑦𝑛𝑛 is the observed response, 𝜂𝜂(𝑥𝑥𝑛𝑛) is the combined prediction from all weak learners 
created so far for observation 𝑥𝑥𝑛𝑛 and η is the learning rate.  
 The algorithm of ‘fitensemble’ function aims to lower the mean absolute error. In every 
learning cycles, it increases the weightage of the weak learners from preceding models to 
improve the performance. Two parameters were selected in this section: the appropriate 
ensemble function and the number of learning cycles. Since the Least Squares Boosting (LS-
Boost) fits for regression purposes [35], the “LSBoost” in MATLAB were used to carry out 
the tasks [36]. As for the number of learning cycles, it was selected based on iteration 
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procedure. Thereafter, original observed SPEIs were replaced by boosted observed SPEIs to 
build BS-SVR models.   

2.5 Wavelet-Boosting-Support Vector Regression (W-BS-SVR)  

Wavelet transformations allow time-scale representation of a given time series and its 
relationship for the analysis of non-stationaries. Wavelet transformations have the capability 
to de-noise a signal or a particular set of data in addition of revealing properties of data, such 
as trends, breakdown points, and discontinuities that other signal processing techniques may 
not able to achieve [26]. There are two categories of wavelet transforms, are known as the 
Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT).  With 
the reason of CWT processed signal is often described by the information redundancy of the 
wavelet coefficients, DWT is usually preferred for practical applications such as forecasting 
[37]. 
 In this study, the DWT is adopted as the data pre-processing technique to reduce the 
noise in data. The DWT is a simplified approach of the wavelet transform using an 
independent set of the wavelet scales, and can be represented using Equation (2) [38], as 
shown below:  

𝜓𝜓𝑗𝑗,𝑚𝑚(𝑚𝑚) = 1

√|𝑠𝑠𝑜𝑜
𝑗𝑗|

∑ 𝜓𝜓𝑘𝑘 (𝑘𝑘−𝑚𝑚𝜏𝜏0𝑠𝑠0
𝑗𝑗

𝑠𝑠0
𝑗𝑗 ) 𝑥𝑥(𝑘𝑘)      (2) 

where j and m are integers that control the scale and translation respectively, while 𝑠𝑠𝑜𝑜
𝑗𝑗 > 1 is 

a fixed dilation step and 𝜏𝜏0 is a translation factor that depends on the dilation step.  
 W-BS-SVR denotes the combination of wavelet transformation with BS-SVR. The ‘a 
trous’ wavelet is adopted as a pre-processing technique to improve the models’ performance 
by reducing the noises in the time series. Daubechies was selected as the mother wavelet 
(with vanishing moment, v = 2 or db2) and the processes were performed in the MATLAB 
platform with the original observed SPEI used as the input for 1-D Stationary Wavelet 
Transform. The choice of db2 was decided based on the results of [37]. They showed that 
db2 yielded better prediction efficiencies for time series with long term features (e.g. 
monthly). During the decomposition process, the original observed SPEIs were decomposed 
into approximation and detail components. Then, the denoised series were used as inputs to 
BS-SVR models for prediction using the procedures outline in the previous section. 

2.6 Performance measures   

The following measures were adopted to assess the accuracy of the models in this study: 

The Mean Absolute Error (MAE) = ∑ |𝑦𝑦�̂�𝑖−𝑦𝑦𝑖𝑖|
𝑁𝑁

𝑁𝑁
𝑖𝑖=1       (3) 

The Root Mean Square Error (RMSE) = √∑ (𝑦𝑦�̂�𝑖−𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁       (4) 

The Coeficient of Determination (R2) = ∑ (𝑦𝑦�̂�𝑖−𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖̅̅̅−𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

     (5) 

The Adjusted R2 = 1 − (1−𝑅𝑅2)(𝑁𝑁−1)
𝑁𝑁−𝑝𝑝−1      (6) 
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where �̅�𝑦𝑖𝑖 is the mean value taken over N, 𝑦𝑦𝑖𝑖  is the observed value, 𝑦𝑦�̂�𝑖 is the predicted value, 
N is the number of data points and p is the number of predictors. The MAE and RMSE 
evaluate the similarity between observed and predicted values, while the R2 and Adjusted R2 

measures the degree of correlation among the observed and predicted values.  

3 Results and discussion 
The performances of the SVR, BS-SVR and W-BS-SVR models were evaluated using the 
commonly used performance measures, namely the MAE, the RMSE, the R2 and the 
Adjusted R2 for all three SPEIs with lead times of 1-month. The results showed that the 
predictions generated by the SVR models varied for SPEIs of different time scales, as shown 
in Table 2. The performances of the models increase when the time scales increase, especially 
for the SPEI-3 and the SPEI-6. This showed the increasing generalization ability of the 
models when the time scale of the SPEIs increases. Based on the estimated Average Moving 
Range (indicate variations in a series) value for each of the SPEIs, the SPEI-1 has the highest 
value of 1.0942, followed by the SPEI-3 and then the SPEI-6 with the values of 0.6472 and 
0.5622, respectively. Based on the drastic improvement in the performance measures from 
prediction of the SPEI-1 to the SPEI-3 and gentler improvement from prediction of the SPEI-
3 to the SPEI-6, what is certain is that the SVR models have better efficiency for the longer 
term SPEIs. 

For the BS-SVR models, the adoption of the boosting technique resulted in improved 
performances compared to the standalone SVR model. Based on the results, it was observed 
that the optimal number of learning cycles to create the lowest generalization error were 313, 
206, 195 respectively for the SPEI-1, the SPEI-3 and the SPEI-6. Since MATLAB trains one 
weak learner for every template object at every learning cycle, the results of decreasing 
optimum number of learning cycles showed that the learning process is getting easier when 
the AMR of the series decrease.  Similar to SVR models, the performance of BS-SVR models 
also increases when the time scales of the SPEIs increase. With the evidences of decreasing 
optimum number of learning cycles and improving accuracy when the lead time increase, it 
was hypothesized that wavelet transformation which reduce noise can produce even better 
accuracy. As expected, W-BS-SVR models produced the most accurate results compared to 
the other two models (Table 2).  

The improvements caused by wavelet pre-processing were drastic for SPEI-1, with all 
performance measures showing W-BS-SVR outperformed the other two models. However, 
the effects of de-noising seemed to become less significant when the time scales of the SPEI 
increases. This was observed when the W-BS-SVR model only had significant improvement 
on correlation (R2 and Adjusted R2) in predicting SPEI-3 and no significant improvement in 
predicting SPEI-6. These results showed that the denoising effects from wavelet become less 
effective when SPEIs has higher variations for smaller time scales. Other than that, by 
applying wavelet pre-processing technique, the optimum number of learning cycles in 
boosting stage have also reduced, to 290, 182, 179 respectively for SPEI-1, SPEI-3 and SPEI-
6. These results showed that wavelet pre-processing technique is also effective in improving 
the learning accuracy.  
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Table 2. SVR, BS-SVR and W-BS-SVR results 

Time 
Scales Models 

Training Validation 

MAE RMSE R2 Adj 
R2 MAE RMSE R2 Adj 

R2 

SPEI-1 
SVR 0.421 0.510 0.909 0.909 0.459 0.557 0.933 0.932 

BS-SVR 0.284 0.340 0.983 0.983 0.308 0.368 0.977 0.976 
W-BS-SVR 0.188 0.232 0.984 0.984 0.205 0.249 0.987 0.987 

SPEI-3 
SVR 0.130 0.192 0.976 0.976 0.152 0.246 0.950 0.949 

BS-SVR 0.117 0.158 0.986 0.986 0.105 0.182 0.973 0.973 
W-BS-SVR 0.118 0.148 0.991 0.991 0.090 0.158 0.982 0.982 

SPEI-6 
SVR 0.091 0.139 0.986 0.986 0.103 0.176 0.973 0.973 

BS-SVR 0.092 0.130 0.989 0.989 0.099 0.148 0.987 0.987 
W-BS-SVR 0.092 0.129 0.990 0.990 0.100 0.147 0.987 0.987 

 
Further evaluation of the models was done with a time-series plot of data in the 

validation period (Fig. 2a to Fig. 2b). As clearly illustrated in all three figures, the predicted 
SPEIs generated by each model closely mirrored the pattern of the observed SPEIs. There 
was also no noticeable delay between the observed and predicted SPEIs. This shows that the 
SVR-based models have no time-shift error in this study and are ideal for the prediction of 
droughts for the Langat River Basin. However, the results of SVR models that underpredicted 
the values of SPEIs also showed that improvements to generate better predictions are 
essential (Fig. 2a). Fig. 2a also showed that the BS-SVR models always tend to over predict 
the extremes, compared to the other two models. This may due to its algorithm of assigning 
higher weightage to weak learners when new ensembles were produced. For this case, the 
extremes may have being treated as weak learners in the process and caused the problem of 
overprediction. As for the W-BS-SVR models, the problem of over-prediction by BS-SVR 
was lessen due to the reduced of noises in the series by wavelet denoising process. As for 
Fig. 2b and Fig. 2c, with the closely mirrored patterns and smaller difference between the 
predicted and observed values, it was concluded that the prediction accuracy of all three 
models have improved due to the increased time scales or reduced variations of the SPEIs.   

 

 
Fig. 2a. Prediction results for SVR, BS-SVR and W-BS-SVR (SPEI-1) 
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Fig. 2b. Prediction results for SVR, BS-SVR and W-BS-SVR (SPEI-3) 

 

 
Fig. 2c. Prediction results for SVR, BS-SVR and W-BS-SVR (SPEI-6) 
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