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Abstract. In order to predict solar thermal collector’s performance and optimization of control algorithms, 
proper mathematical models are necessary. Computer calculation technique provides tools for determination 
of modern materials impact on improvement of heat transfer inside the collector and minimization of heat 
loss. Such analysis is impossible by using standard technical datasheet provided by producer or by using 
empirical formulas. In the paper the authors present a mathematical model of a flat plate solar thermal 
collector based on the Hottel-Whiller-Bliss equation and criterial formula. The iterative algorithm solved 
steady state heat transfer equations for a glazed and an unglazed collector. The validation experiment was 
conducted under class AAA sun simulator for different inlet temperature and solar irradiation values. The 
unglazed PV/T and glazed solar thermal collectors were tested. For PV/T the relative difference, between 
measured and computed outlet temperatures, was below 5% and the highest value was reached for the 
lowest inlet temperature. The validation study showed that the experimental results reached good agreement 
with simulation predictions. Presented computation algorithm enables to predict influence of geometry 
changes on collector performance. The model could be used for optimization of the construction without 
using CFD methods, which need large computation resources.  

NOMENCLATURE 
A – area, m2, 
as – thermal diffusivity, m2/s, 
c – specific heat at constant pressure, J/(kgK), 
D – external diameter, m, 
d– internal diameter, m, 
F – fin efficiency, 
F’ – plate efficiency factor, 
FR – heat removal factor, 
G – irradiance, W/(m2), 
Gr– Grashof number, (gβ’ΔTL3/ν2), 
h – heat transfer coefficient, W/(m2K), 
k –thermal conductivity, W/(m⋅K), 
L – characteristic dimension, m, 
m – mass flow rate, kg/s, 
Nc – number of glass cover, 
Nu – Nusselt number,(hL/k) 
Pr – Prandtl number, (a/k) 
Qu – useful heat rate, W, 
Ra – Rayleigh number, (GrPr) 
Re – Reynolds number, (wL/ν) 
T – temperature, °C, 
U – heat loss coefficient, W/(m2K), 
W – distance between canals, m, 
w – wind velocity, m/s, 

Greek symbols 

α – absorbance, 
β – collector tilt angel from horizontal, deg, 
β’ – volumetric coefficient of expansion, 1/K, 
δ – plate thickness, m, 
ε – emissivity, 
ν – kinematic viscosity, m2/s 
σ – Stefan-Boltzmann constant, W/(m2 K4), 

Subscripts 

a – ambient, 
c – convection, 
f – fluid, 
g – glass, 
in – inlet, 
l – total heat loss, 
out – outlet, 
p – plate, 
r – radiation, 
sky – sky, 
t – top, 
w – wind or wall, 
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1 Introduction 

Flat plate collectors are used widely for domestic hot 
water preparation and domestic heating. Mathematical 
models of solar thermal collector are used for simulation 
or optimization of system. Many researchers used the 
Hottel-Bliss-Whiller equation to compute collectors 
performance [1]–[4]. Some work applied the Hottel-
Bliss-Whiller equation to multiflow numerical analyses 
[5], air collectors [6] and concentrated collectors [7] 
have been published so far. The process of the heat 
transfer between the absorber and an ambient is 
complicated, especially for the top losses. Heat is 
transferred by a convection and by a radiation. Empirical 
formula for the heat loss coefficient was proposed by 
Klein and further it was developed by others [4], [8]–
[10]. The Klein formula has the following form [8], [9]: 

 Ut = 1/{Nc Tp/C/[(Tp – Ta)/(Nc + f)]e + 1/hw}+ 

+σ (Tp + Ta)(Tp + Ta)2/[1/(εp + 0.00591 Nc hw)+ 

 (Nc+f – 1 + 0.133 εp)/εg – Nc] (1) 

 f = (1 + 0.0889hw – 0.1166hw εp)(1 + 0.07866Nc) (2) 

 C = 520 (1 – 0.000051 β2) (3) 

 e = 0.43 (1 – 100/Tp) (4) 

The Klein formula results in large errors due to 
calculation of convection and radiation parallel with 
unknown glass temperature [9]. A mathematical model 
of solar collector based on analogy between heat transfer 
and electrical circuit was proposed [2]. The model was 
developed and empirical equation for glass temperature 
was presented [9]. Many experiments of convection have 
been conducted and equations for heat transfer 
coefficient have been proposed [2], [6], [11]–[13]. The 
formulas compute heat transfer coefficient as linear 
function of air velocity, for example McAdams which is 
a popular formula [2], [6]: 

 hw = 5.7 + 3.8 w (5) 

During last years some research was conducted to 
optimize collectors area, storage tank volume and system 
pattern [4], [14]–[16]. Mathematical model of solar 
thermal collector used for optimization based on 
characteristic equation was presented in literature [14], 
[15]. The Hottel-Bliss-Whiller equation and empirical 
formula was also used in optimization for calculations of 
top heat loss coefficient [4]. Optimization of absorber 
plate geometry was done in reference [17], while 
complex optimization of geometry, physical properties 
of materials and system were not reported in the 
literature. Proposed mathematical model gives 
opportunity to analyse influence of material properties 
and geometry on collector efficiency. Moreover, it could 
be applied in order to reduced collector mass and 
production cost by using new materials. 

2 Mathematical model 
The mathematical model, presented by the authors, 
based on the Hottel-Whiller-Bliss equation has the 
following form [1]–[3]: 

 Qu = AFR[G(ατ) – Ul (Tin – Ta)] (6) 

Heat loss coefficient is a sum of bottom heat loss and 
top heat loss coefficients. The convection from the back 
of the collector was neglected. The back heat loss 
coefficient was computed from thermal resistance of the 
insulation. The top heat loss coefficient was computed 
from connection of thermal resistances of radiation and 
convection according to equation [2], [3], [9]: 

 Ut = 1/[1/(hc,g-p + hr,g-p) + 1/(hc,g-a + hr,g-sky)] (7) 

Radiative heat transfer coefficient between plate and 
glass cover was computed by [2], [3], [9]: 

 hr,g-p = σ (Tp
2 + Tg

2)(Tp + Tg)/(1/εp + 1/εg – 1) (8) 

For radiation from glass surface to the sky [2]: 

 hr,g-sky = σ εg (Tsky
2 + Tg

2)(Tsky + Tg)/(Tg – Ta) (9) 

The convective heat transfer in the air gap was 
calculated from the Hollands equation [2], [3], [8]: 

 Nu = 1 +  

 1.44[1-1708/(Ra cosβ)]+[1-1708(sinβ)1,6/(Ra cosβ)] +  

 [(Ra cosβ/5830)1/3 – 1]+ (10) 

From the glass surface heat is transferred to the 
ambient by a free or forced convection. For a free 
convection the Nusselt number was calculated by [2]: 

 Nu = 0.15 Ra1/3 (11) 

The Nusselt number for a forced convection was 
computed by [2]: 

 Nu = 0.86 Re1/2 Pr1/3 (12) 

The heat removal factor was calculated with 
a procedure applied by many researchers [2], [3], [18], 
[19]: 

 FR = m cf/(A Ul) {1 – exp[– A Ul F’/(m cf)]} (13) 

 F’ = 1/W/{1/[D + (W – D) F] + Ul/(π d hf)} (14) 

where F is fin efficiency. 

The heat transfer coefficient in plate channels was 
computed from the Michiejew equation [20]: 

 Nu = 0.15 Ref
1/3 Grf

0.1 Prf
0.43 (Prf / Prw)0.25 (15) 

For a computation of the collector’s outlet 
temperature inlet parameters are necessary. The model 
needs the meteorological and the flow data, such as: 
irradiance, wind speed, ambient and sky temperature, 
mass flow through the collector and inlet temperature. 
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Fig. 1. Block diagram of computational algorithm. 

2.1. Sensitivity analysis 

The influence of the input parameters to the model was 
analysed by simulations. Testing data sets were prepared 
for each input parameter (solar irradiation, inlet 
temperature, ambient temperature, wind speed, mass 
flow rate). The outlet temperature was calculated for 
variation of one parameter when others were constant. 
Procedure was repeated with changed constant 
parameter. The influence was calculated from equation: 

 ΔTout/ΔX = (Tout
j+1-Tout

j-1)X j/Tout
j/(X j+1-X j-1) (16) 

where X is the examined parameter, j is the index of 
data. The results of analysis were presented in the figures 
below, except for the wind speed, which had the least 
influence. 

 

Fig. 2. Influence of inlet temperature on computed outlet 
temperature. 

Influence of inlet temperature locally rising and then 
falling down. The rise is connected with the working 
point where efficiency of the collector is close to the 
zero value. After changing to the negative value 

influence of the inlet temperature is falling down 
(Fig. 2). 

 

Fig. 3. Influence of inlet temperature on computed outlet 
temperature. 

 

Fig. 4. Influence of solar irradiation on computed outlet 
temperature. 

 

Fig. 5. Influence of mass flow rate on computed outlet 
temperature. 
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Fig. 6. Influence of mass flow rate on computed outlet 
temperature. 

 

Fig. 7. Influence of ambient temperature on computed outlet 
temperature. 

2.2 Convergence and iteration influence 

The calculation algorithm had two convergence 
conditions:  
• difference between new and old outlet temperature value 
lower than 0.001°K, 
• conservation of the energy with an accuracy of 70 J.  

The programme reached required convergence in 
about 10 iteration during sensitivity analysis. Results of 
convergence and number of iteration were presented in 
Fig. 8 and Fig. 9 for datasets used for inlet temperature 
and irradiation sensitivity analysis.  

Number of iteration had approximately exponential 
influence on the convergence (Fig. 10). 

 

Fig. 8. Histogram of the energy covergence. 

 

Fig. 9. Histogram of iteration required to reach convergence.  

 

Fig. 10. Variation of convergence.
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3 Validation experiment 
The experiment was conducted under class AAA solar 
simulator – LA150200 (Eternal Sun) in controllable 
conditions. The following parameters were measured 
during the experiment: 
• irradiation, by SR11 Hukselflux pyrometer, 
• infrared irradiation, by IR02 Hukselflux pyrgeometer, 
• temperature, by PT100 A class resistant thermometers, 
• mass flow, by Optimass 6400C flowmeter. 

Weber Sol ECO 2,0 and Ensol 2,0 PV/T solar 
collectors were examined. Figure 11 presents deviation 
between measured and computed values of outlet 
temperature of the PV/T. The experiment was conducted 
for two different solar irradiations (820 and 1020 W/m2) 
and for four inlet temperatures (14, 23, 32, 42˚C). Mass 
flow rate during experiment was set about 1.2 l/min, 
Temperature in the experimental lab was set between 21 
to 29˚C. During each measurement ambient temperature 
was constant. Air velocity was constant and equal to 
1 m/s. Experiment was conducted in steady state, the 
experiment’s data were measured for at least 5 minutes. 
The uncertainty of the measured data was estimated 
based on standard deviation and meter accuracy. 
Temperature’s uncertainty was estimated as 0.3˚C, 
irradiation uncertainty was estimated as 16 W/m2. 
Because of little influence on the computation results 
uncertainties of wind speed and mass flow rate were not 
taken into consideration. 

 

Fig. 11. Difference between measured and computed outlet 
temperatures of PV/T. 

 

Fig. 12. Varation of outlet temperature mesured and simulated 
for irradiation of 820 W/m2. 

 

Fig. 13. Varation of outlet temperature mesured and simulated 
for irradiation of 1020 W/m2. 

 

Fig. 14. Varation of difference beetwen mesured and simulated 
outlet temperature of presented model and for model, which 
used Klein formula. 
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Fig. 15. Variation of Weber Sol ECO collector efficiency. 

 

Fig. 16. Inluence of the inlet temperature uncertainty on outlet 
temperature. 

 

Fig. 17. Inluence of the solar irradiation uncertainty on outlet 
temperature. 

4 Conclusions 

The mathematical model of solar thermal collector was 
presented. The sensitivity analysis showed that inlet 
temperature value had significant influence on the 

computation results. 1% change in inlet temperature 
resulted in about 1% change in outlet temperature. Inlet 
temperature influence was presented in Fig. 2 and Fig. 3. 
Second factor with huge impact in sensitivity analysis 
was solar irradiation (Fig. 4). The influence of mass flow 
rate depended on the irradiation, ambient temperature 
and inlet temperature. 

The solving algorithm was reaching required 
accuracy in about 10 iterations. Increasing precision of 
the solution did not increase significantly the number of 
iteration (Fig. 10). 

The analysis of the comparison between the 
experiment and simulation leads to the following 
conclusions. First of all, the presented model achieved 
a good agreement with the experiment; a maximum 
difference about 3% was obtained (Fig. 14).  

Uncertainty of the measured parameters had not 
significant influence on the computation results (Fig. 16 
and Fig. 17). 

The Klein formula in every simulation under-
estimated collector efficiency and outlet temperature 
(Fig. 12, Fig. 13 and Fig 14). Moreover, every use of the 
Klein formula gave higher difference between 
experiments than the model. Computation costs of Klein 
formula algorithm and the model were similar. Both 
methods needed about 4 iterations during validation 
simulation. Simulation with Klein formula in most cases 
reached better convergence but results were not as closed 
to the experiment as the model’s results. The presented 
model gave more accurate results than a model based on 
the Klein formula. 

 
Fig. 18. Comparasion between models in respection to number 
of iteration. 

According to the experiment for PV/T collector the 
model can be used in order to achieve 5% accuracy. 
This work was supported by the own research fund of 
The Szewalski Institute of Fluid-Flow Machinery PASci 
(FBW27). 

One of the authors (M. K.) was supported by the 
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Fig. 19. Comparasion between models in respective to energy 
convergence. 
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Abstract. In order to predict solar thermal collector’s performance and optimization of control algorithms, proper mathematical models are necessary. Computer calculation technique provides tools for determination of modern materials impact on improvement of heat transfer inside the collector and minimization of heat loss. Such analysis is impossible by using standard technical datasheet provided by producer or by using empirical formulas. In the paper the authors present a mathematical model of a flat plate solar thermal collector based on the Hottel-Whiller-Bliss equation and criterial formula. The iterative algorithm solved steady state heat transfer equations for a glazed and an unglazed collector. The validation experiment was conducted under class AAA sun simulator for different inlet temperature and solar irradiation values. The unglazed PV/T and glazed solar thermal collectors were tested. For PV/T the relative difference, between measured and computed outlet temperatures, was below 5% and the highest value was reached for the lowest inlet temperature. The validation study showed that the experimental results reached good agreement with simulation predictions. Presented computation algorithm enables to predict influence of geometry changes on collector performance. The model could be used for optimization of the construction without using CFD methods, which need large computation resources. 

Nomenclature


A – area, m2,


as – thermal diffusivity, m2/s,


c – specific heat at constant pressure, J/(kgK),


D – external diameter, m,


d– internal diameter, m,


F – fin efficiency,


F’ – plate efficiency factor,


FR – heat removal factor,


G – irradiance, W/(m2),


Gr– Grashof number, (gβ’ΔTL3/ν2),


h – heat transfer coefficient, W/(m2K),


k –thermal conductivity, W/(m(K),


L – characteristic dimension, m,


m – mass flow rate, kg/s,


Nc – number of glass cover,


Nu – Nusselt number,(hL/k)


Pr – Prandtl number, (a/k)


Qu – useful heat rate, W,


Ra – Rayleigh number, (GrPr)


Re – Reynolds number, (wL/ν)


T – temperature, °C,


U – heat loss coefficient, W/(m2K),


W – distance between canals, m,


w – wind velocity, m/s,



Greek symbols


α – absorbance,


β – collector tilt angel from horizontal, deg,


β’ – volumetric coefficient of expansion, 1/K,


δ – plate thickness, m,


ε – emissivity,


ν – kinematic viscosity, m2/s


σ – Stefan-Boltzmann constant, W/(m2 K4),


Subscripts


a – ambient,


c – convection,


f – fluid,


g – glass,


in – inlet,


l – total heat loss,


out – outlet,


p – plate,


r – radiation,

sky – sky,


t – top,


w – wind or wall,

1 Introduction

Flat plate collectors are used widely for domestic hot water preparation and domestic heating. Mathematical models of solar thermal collector are used for simulation or optimization of system. Many researchers used the Hottel-Bliss-Whiller equation to compute collectors performance [1]–[4]. Some work applied the Hottel-Bliss-Whiller equation to multiflow numerical analyses [5], air collectors [6] and concentrated collectors [7] have been published so far. The process of the heat transfer between the absorber and an ambient is complicated, especially for the top losses. Heat is transferred by a convection and by a radiation. Empirical formula for the heat loss coefficient was proposed by Klein and further it was developed by others [4], [8]–[10]. The Klein formula has the following form [8], [9]:



Ut = 1/{Nc Tp/C/[(Tp – Ta)/(Nc + f)]e + 1/hw}+



+σ (Tp + Ta)(Tp + Ta)2/[1/(εp + 0.00591 Nc hw)+



(Nc+f – 1 + 0.133 εp)/εg – Nc]
(1)



f = (1 + 0.0889hw – 0.1166hw εp)(1 + 0.07866Nc)
(2)


C = 520 (1 – 0.000051 β2)
(3)



e = 0.43 (1 – 100/Tp)
(4)


The Klein formula results in large errors due to calculation of convection and radiation parallel with unknown glass temperature [9]. A mathematical model of solar collector based on analogy between heat transfer and electrical circuit was proposed [2]. The model was developed and empirical equation for glass temperature was presented [9]. Many experiments of convection have been conducted and equations for heat transfer coefficient have been proposed [2], [6], [11]–[13]. The formulas compute heat transfer coefficient as linear function of air velocity, for example McAdams which is a popular formula [2], [6]:



hw = 5.7 + 3.8 w
(5)


During last years some research was conducted to optimize collectors area, storage tank volume and system pattern [4], [14]–[16]. Mathematical model of solar thermal collector used for optimization based on characteristic equation was presented in literature [14], [15]. The Hottel-Bliss-Whiller equation and empirical formula was also used in optimization for calculations of top heat loss coefficient [4]. Optimization of absorber plate geometry was done in reference [17], while complex optimization of geometry, physical properties of materials and system were not reported in the literature. Proposed mathematical model gives opportunity to analyse influence of material properties and geometry on collector efficiency. Moreover, it could be applied in order to reduced collector mass and production cost by using new materials.


2 Mathematical model

The mathematical model, presented by the authors, based on the Hottel-Whiller-Bliss equation has the following form [1]–[3]:



Qu = AFR[G(ατ) – Ul (Tin – Ta)]
(6)


Heat loss coefficient is a sum of bottom heat loss and top heat loss coefficients. The convection from the back of the collector was neglected. The back heat loss coefficient was computed from thermal resistance of the insulation. The top heat loss coefficient was computed from connection of thermal resistances of radiation and convection according to equation [2], [3], [9]:



Ut = 1/[1/(hc,g-p + hr,g-p) + 1/(hc,g-a + hr,g-sky)]
(7)


Radiative heat transfer coefficient between plate and glass cover was computed by [2], [3], [9]:



hr,g-p = σ (Tp2 + Tg2)(Tp + Tg)/(1/εp + 1/εg – 1)
(8)


For radiation from glass surface to the sky [2]:



hr,g-sky = σ εg (Tsky2 + Tg2)(Tsky + Tg)/(Tg – Ta)
(9)


The convective heat transfer in the air gap was calculated from the Hollands equation [2], [3], [8]:



Nu = 1 + 



1.44[1-1708/(Ra cosβ)]+[1-1708(sinβ)1,6/(Ra cosβ)] + 



[(Ra cosβ/5830)1/3 – 1]+
(10)


From the glass surface heat is transferred to the ambient by a free or forced convection. For a free convection the Nusselt number was calculated by [2]:



Nu = 0.15 Ra1/3
(11)


The Nusselt number for a forced convection was computed by [2]:



Nu = 0.86 Re1/2 Pr1/3
(12)


The heat removal factor was calculated with a procedure applied by many researchers [2], [3], [18], [19]:



FR = m cf/(A Ul) {1 – exp[– A Ul F’/(m cf)]}
(13)



F’ = 1/W/{1/[D + (W – D) F] + Ul/(π d hf)}
(14)


where F is fin efficiency.


The heat transfer coefficient in plate channels was computed from the Michiejew equation [20]:



Nu = 0.15 Ref1/3 Grf0.1 Prf0.43 (Prf / Prw)0.25
(15)


For a computation of the collector’s outlet temperature inlet parameters are necessary. The model needs the meteorological and the flow data, such as: irradiance, wind speed, ambient and sky temperature, mass flow through the collector and inlet temperature.


[image: image1.emf]

Fig. 1. Block diagram of computational algorithm.

2.1. Sensitivity analysis


The influence of the input parameters to the model was analysed by simulations. Testing data sets were prepared for each input parameter (solar irradiation, inlet temperature, ambient temperature, wind speed, mass flow rate). The outlet temperature was calculated for variation of one parameter when others were constant. Procedure was repeated with changed constant parameter. The influence was calculated from equation:


ΔTout/ΔX = (Toutj+1-Toutj-1)X j/Toutj/(X j+1-X j-1)
(16)


where X is the examined parameter, j is the index of data. The results of analysis were presented in the figures below, except for the wind speed, which had the least influence.

[image: image2.png]

Fig. 2. Influence of inlet temperature on computed outlet temperature.

Influence of inlet temperature locally rising and then falling down. The rise is connected with the working point where efficiency of the collector is close to the zero value. After changing to the negative value influence of the inlet temperature is falling down (Fig. 2).
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Fig. 3. Influence of inlet temperature on computed outlet temperature.
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Fig. 4. Influence of solar irradiation on computed outlet temperature.
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Fig. 5. Influence of mass flow rate on computed outlet temperature.
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Fig. 6. Influence of mass flow rate on computed outlet temperature.
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Fig. 7. Influence of ambient temperature on computed outlet temperature.

2.2 Convergence and iteration influence

The calculation algorithm had two convergence conditions: 


• difference between new and old outlet temperature value lower than 0.001°K,


• conservation of the energy with an accuracy of 70 J. 


The programme reached required convergence in about 10 iteration during sensitivity analysis. Results of convergence and number of iteration were presented in Fig. 8 and Fig. 9 for datasets used for inlet temperature and irradiation sensitivity analysis. 

Number of iteration had approximately exponential influence on the convergence (Fig. 10).


[image: image8.png]

Fig. 8. Histogram of the energy covergence.

[image: image9.png]

Fig. 9. Histogram of iteration required to reach convergence. 
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Fig. 10. Variation of convergence.


3 Validation experiment

The experiment was conducted under class AAA solar simulator – LA150200 (Eternal Sun) in controllable conditions. The following parameters were measured during the experiment:


• irradiation, by SR11 Hukselflux pyrometer,


• infrared irradiation, by IR02 Hukselflux pyrgeometer,


• temperature, by PT100 A class resistant thermometers,


• mass flow, by Optimass 6400C flowmeter.


Weber Sol ECO 2,0 and Ensol 2,0 PV/T solar collectors were examined. Figure 11 presents deviation between measured and computed values of outlet temperature of the PV/T. The experiment was conducted for two different solar irradiations (820 and 1020 W/m2) and for four inlet temperatures (14, 23, 32, 42˚C). Mass flow rate during experiment was set about 1.2 l/min, Temperature in the experimental lab was set between 21 to 29˚C. During each measurement ambient temperature was constant. Air velocity was constant and equal to 1 m/s. Experiment was conducted in steady state, the experiment’s data were measured for at least 5 minutes. The uncertainty of the measured data was estimated based on standard deviation and meter accuracy. Temperature’s uncertainty was estimated as 0.3˚C, irradiation uncertainty was estimated as 16 W/m2. Because of little influence on the computation results uncertainties of wind speed and mass flow rate were not taken into consideration.
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Fig. 11. Difference between measured and computed outlet temperatures of PV/T.
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Fig. 12. Varation of outlet temperature mesured and simulated for irradiation of 820 W/m2.
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Fig. 13. Varation of outlet temperature mesured and simulated for irradiation of 1020 W/m2.
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Fig. 14. Varation of difference beetwen mesured and simulated outlet temperature of presented model and for model, which used Klein formula.
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Fig. 15. Variation of Weber Sol ECO collector efficiency.
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Fig. 16. Inluence of the inlet temperature uncertainty on outlet temperature.
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Fig. 17. Inluence of the solar irradiation uncertainty on outlet temperature.

4 Conclusions


The mathematical model of solar thermal collector was presented. The sensitivity analysis showed that inlet temperature value had significant influence on the computation results. 1% change in inlet temperature resulted in about 1% change in outlet temperature. Inlet temperature influence was presented in Fig. 2 and Fig. 3. Second factor with huge impact in sensitivity analysis was solar irradiation (Fig. 4). The influence of mass flow rate depended on the irradiation, ambient temperature and inlet temperature.


The solving algorithm was reaching required accuracy in about 10 iterations. Increasing precision of the solution did not increase significantly the number of iteration (Fig. 10).

The analysis of the comparison between the experiment and simulation leads to the following conclusions. First of all, the presented model achieved a good agreement with the experiment; a maximum difference about 3% was obtained (Fig. 14). 

Uncertainty of the measured parameters had not significant influence on the computation results (Fig. 16 and Fig. 17).

The Klein formula in every simulation under-estimated collector efficiency and outlet temperature (Fig. 12, Fig. 13 and Fig 14). Moreover, every use of the Klein formula gave higher difference between experiments than the model. Computation costs of Klein formula algorithm and the model were similar. Both methods needed about 4 iterations during validation simulation. Simulation with Klein formula in most cases reached better convergence but results were not as closed to the experiment as the model’s results. The presented model gave more accurate results than a model based on the Klein formula.
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Fig. 18. Comparasion between models in respection to number of iteration.


According to the experiment for PV/T collector the model can be used in order to achieve 5% accuracy.
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Fig. 19. Comparasion between models in respective to energy convergence.
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