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Abstract. This paper details an experimental study that was performed to investigate rheological properties 
of microencapsulated phase change slurry - mPCM (Micronal® DS 5039 X and ERGOLID EKO®- an 
aqueous solution of propylene glycol). Seven samples of mPCM slurry were prepared with different mass 
ratio of the Micronal® to the ERGOLID EKO®: 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10. The 
apparent viscosity-shear rate curves were obtained for spindle speed from 0.01 to 100 rpm (shear rate 
0.0132 to 132.00 s-1 respectively). The steady state measurement of viscosity was carried out when the 
slurry reached constant temperatures, namely: 10.0; 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 40.0 and 50.00C. 
The apparent viscosity of slurries increases with the mPCM concentration in dispersion rises. Only the 
sample of 30% Micronal® may be considered as a Newtonian fluid within the test range. Increasing the 
shear rate ultimately causes apparent viscosity to decrease down to the Newtonian plateau, where it seems 
to be constant. The variation of the viscosity as a function of temperature and microcapsules concentration 
was accurately represented by a modified Vogel-Tamman-Fulcher equation at a mean absolute error (MAE) 
of 10.76%. 

1 Introduction  
Technological advancements have made mass 
production of capsules with a diameter of the order of 
micrometers available today. Hence, flow is possible for 
a whole dispersion of base fluid and microcapsules filled 
with phase-changing material. Intensive research has 
been undertaken to determine the thermal properties and 
flow characteristics of microencapsulated Phase Change 
Material Slurries (mPCM slurry), which are classified as 
Latent Functional Thermal Fluid (LFTF)[1]. LTFT is a 
two-phase working fluid used in heat exchange systems 
and is characterized by a greater heat transfer capacity 
(by latent heat in the phase transition temperature range) 
compared to conventional single-phase fluids.  

MPCM slurries offer many advantages and can be 
used either as thermal storage materials or heat transfer 
fluids due to: 1) their high storage capacity during phase 
change; 2) the possibility of using the same medium 
either to transport or to store energy, as these slurries are 
pumpable (thus reducing heat transfer losses); 3) heat 
transfer at an approximately constant temperature; 4) a 
high heat transfer rate due to the elevated ratio 
surface/volume; 5) a lower pumping power, as a 
consequence of the reduction in mass flow rate due to 
the higher heat capacity; 6) a better heat exchange than 
conventional heat transfer fluids, due to the decrease in 
fluid temperature as a consequence of the higher heat 
capacity. Furthermore, these novel fluids have a more 
advantageous thermal energy storage density than 
conventional systems of sensible heat storage in water, 

and can compete with macroencapsulated PCM tanks. 
Moreover, the response time may be shorter using these 
PCM emulsions or mPCM slurries as a storage material 
than with macro- encapsulated PCM. The tanks will be 
simpler as there is no need to macroencapsulate, thus 
conventional tanks can be used [2]. 

Viscosity plays a significant role in determining the 
pressure drop and characteristics of fluid flow described 
by Reynolds and Grashoff number (higher viscosity 
leads to the lower turbulence of the slurry, so the heat 
transfer coefficient may be lowered). 

2 Previous study on mPCM slurry 
viscosity  
Zhang and Zao [3] experimentally investigated the 
thermal and rheological properties of a series of prepared 
mPCM slurries fabricated by dispersing micro-
encapsulated PCM into water with an appropriate 
amount of surfactant. The mass ratio of mPCM to water 
and surfactant was 10:90:1, 25:75:1, 35:65:1, 
respectively. The mPCM slurry can be considered as 
Newtonian fluid when the shear rate is higher than 
200 s-1 and the PCM microcapsules’ mass fraction lower 
than 35 wt. %. The viscosity was higher for larger 
particle slurries. 

Delgado et al. [2] experimentally investigated the 
microencapsulated PCM slurry with three different PCM 
mass fractions (14, 20 and 30%). The studied mPCM 
slurry consisted of microcapsules of paraffin coated by a 
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polymer and dispersed in water through detergents. 
These PCM microcapsules had a diameter range from 1 
to 20 µm. The viscosity - shear rate curves using a 
control stress rheometer were obtained through a shear 
sweep from 0.001 to 1000 s-1 and at a constant 
temperature (T = 27°C). The equation that best predicts 
the shape of the flow curve for the three mPCM slurries 
is the non-Newtonian model, namely the Carreau model. 

Allouche et al. [4] investigated the 45% w/w aqueous 
dispersion of RT15 paraffin microcapsules supplied by 
CIBA chemicals (UK) while a rheological rotational 
rheometer (UM/MC 100 PHYSICA) was used. 
Experiments were performed applying constant shear 
rates from 10 to 500 s-1. Tests were repeated in a 
temperature range of 7–20°C. The rheological study 
revealed a non-Newtonian fluid behaviour of the PCM 
for different temperature settings. 

Kong et al. [5] used mPCM slurries produced by 
Thies Technology Inc. as heat transfer fluids. The phase 
change material (PCM) used in the study was butyl 
stearate. Each microcapsule was made by encapsulating 
the PCM using polyurea as a shell material, which made 
up about 35% of the total volume of each microcapsule. 
The mPCM particle size range used in the experiments 
was between 5 and 10 µm in diameter. The apparent 
viscosity of mPCM slurries was measured using a 
coaxial rotating drum viscometer from Brookfield 
Engineering Laboratories Inc. Microencapsulated PCM 
slurries with 2.1, 5.9, 8.3 and 10.9 wt. %, respectively, 
were tested in a temperature range of 5–35°C. The 
viscosity was measured at three different rotational 
speeds of 50, 60 and 100 rpm. The experimental results 
showed that the viscosity of mPCM slurry is independent 
of the shear rate and behaves as a Newtonian fluid. 

In a paper by Wang et al. [6] experimental research 
on the natural convective heat transfer with 
microencapsulated phase change material suspensions is 
described. The microencapsulated PCM slurry was 
formulated with PCM powder with N-hexadecane as the 
core material and a diameter range of 10 ÷ 40 μm. The 
water–propanol mixture was the base fluid along with 
the addition of dispersants. The viscosity of 10 ÷ 30 wt. 
% mPCM suspensions was measured with the TADHR-2 
rheometer at a room temperature of 20 °C and shear rate 
of up to 100 s-1. The 10 wt. % and 20 wt. % mPCM 
slurry behave as Newtonian fluids while the 30 wt. % 
mPCM slurry shows the shear thinning non-Newtonian 
characteristic. 

Fu et al. [7] conducted experiments on thermo-
physical properties of n-tetradecane&polystyrene-silica 
composite nanoencapsulated phase change material 
slurry. The mean particle size of Tet@PS-SiO2 mPCM 
was 151.3 nm. The mPCM water slurry contained 5% 
PCM and 15 wt. % amount of antifreeze. The viscosity 
of the slurry was investigated by a Brookfield DV-II + 
Pro rotation viscometer with S61 rotor type at 100 rpm 
in a temperature range from 5 to 25°C. It was found that 
the viscosities of all slurries were slightly higher than 
that of the base fluid. 

Generally, the mPCM slurry is considered as a 
Newtonian fluid when the mass fraction of mPCM is up 

to 30% [4–6,8,9] or when the shear rate is large enough 
[3]. After adding additives such as surfactant agents, the 
mPCM slurry stopped behaving as a non-Newtonian 
fluid and started behaving as a Newtonian fluid [10,11]. 
The viscosities of slurries rose with the increase of the 
mass fraction of microcapsules up to several dozen times 
[5–8,12–15]. 

The purpose of this study is to investigate the 
rheological properties of mPCM slurry. In this paper, an 
mPCM slurry made of a new product, the Micronal® DS 
5039 X and ERGOLID EKO (an aqueous solution of 
propylene glycol) - as a base fluid, with seven different 
mass fractions was obtained. The study examines the 
effect of Micronal® DS 5039 X mass fraction on slurry 
viscosity along with the effect of temperature increase 
(10-50°C) on slurry viscosity. Detailed steady state 
condition characteristics and a predictive model for this 
property were obtained. 

3 Experimental setup and procedure  

3.1 Slurry properties 

Micronal® DS 5039 X (BASF) is an aqueous dispersion 
of microencapsulated paraffin mixture with highly cross-
linked polymethyl methacrylate (PMMA) shell. 
According to the manufacturer the product contains: 1,2-
benzisothiazol-3(2H)-one (22 ppm); 2-methyl-2H-
isothiazol-3-one (22 ppm) and a (3:1) mixture of 5-
chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-
isothiazolin-3-one (13.5 ppm); and a range of particle 
size of 1 - 5 μm. Micronal® DS 5039 X contains 42.0-
44.0% of solids in water. The main peak melting 
temperature of the product is around 25°C, the enthalpy 
of fusion (liquid) 41 kJ/kg, the latent heat (solid content) 
100 kJ/kg, and the total thermal storage capacity (solid 
content, integral 10–30°C) 142 kJ/kg. The advantages of 
the special microencapsulation process that is used to 
manufacture Micronal® DS 5039 X are that the product 
is free of formaldehyde, has high mechanical stability 
and resistance to high temperatures, and that the polymer 
capsule is able to resist damage. Mechanical stability 
should be understood as consistency stability, colour and 
uniformity of the concentrate structure. A mechanically 
stable product should maintain the abovementioned 
features even after prolonged storage (several months). 
Micronal® DS 5039 X can be employed passively or in 
combination with an active cooling system. Some other 
Micronal® products (e.g. Micronal® DS 5001) has been 
incorporated in mortar, concrete or plasterboard as a 
passive system, while it is also used in active systems 
such as slurries [16]. 

Seven samples of mPCM slurries by mechanical 
mixing with the following mass ratios of Micronal® DS 
5039 X to ERGOLID EKO: 30:70, 40:60, 50:50, 60:40, 
70:30, 80:20 and 90:10, were prepared respectively. The 
ERGOLID EKO, applied as a base fluid, is a 
recommended in climatic conditions of Poland 
commercial product for usage in solar collector 
installations. The ERGOLID EKO contents of 37% 
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pure propylene glycol and 63% of water with minor 
fraction of additives. Because Micronal® DS 5039 X 
contains 42.0-44.0% of solids in water, the actual mass 
fraction of microcapsules in the tested suspension was 
respectively: 12.9, 17.2, 21.5, 25.8, 30.1, 34.4 and 
38.7%. 

3.2 Experimental set-up 

The viscosity of the slurry was investigated by a 
Brookfield DV-II+ Pro rotation viscometer (Brookfield 
Co., Ltd., USA) with a small sample adapter, consisting 
of a cylindrical sample chamber and spindle coupled 
with a PolyScience circulating water bath for 
temperature control (Fig. 1). The small sample adapter 
provides a defined geometry system for accurate 
viscosity measurements of small sample volumes at 
precise shear rates. As the SC4-18 spindle type was used 
for this viscometer to execute experiments, the sample 
injected volume was 6.7 ml. The small sample adapter’s 
rheologically correct cylindrical geometry provides 
extremely accurate viscosity measurements and shear 
rate determinations. The Brookfield viscometer measures 
viscosity by measuring the force required to rotate a 
spindle in a fluid at a specified temperature in relation to 
its shear rate. On the DV+II viscometer type, the 
viscosity can be read directly or by using the Rheocalc 
program installed on a computer connected to the 
viscometer.  

 

Fig. 1. Experimental set-up: 1 - Brookfield DV-II + Pro 
viscometer, 2 – small sample adapter, 3 – PolyScience 
circulating water bath, 4 – computer with the Rheocalc 
program. 

 
The sample chamber fits into a water jacket so that 

precise temperature control can be achieved when a 
circulating water bath is used. The stirring action of the 
rotating spindle, plus the small sample volume, helps one 
to keep the temperature gradient across the sample to a 
minimum. A direct readout of the sample temperature is 
provided using sample chambers with an embedded 
RTD sensor connected to the viscometer. 

3.3 Test conditions and procedure 

In this experiment, rotational tests were carried out. 
These tests entail applying torque (or stress) and 

measuring the strain, in order to obtain viscosity values. 
The apparent viscosity-shear rate curves were obtained 
through a spindle speed from 0.01 to 100 rpm (shear rate 
0.0132 to 132.00 s-1 respectively). The measurement of 
viscosity was carried out when the slurry reached a 
constant temperature, namely: 10.0; 15.0, 17.5, 20.0, 
22.5, 25.0, 27.5, 30.0, 40.0 and 50.0°C. At a constant 
temperature the value of viscosity at eighteen spindle 
speeds was collected by the Rheocalc program after five 
minutes of waiting. As a tests for each temperature were 
repeated three times, mean value of three readings are 
presented in the figures. Although the Brookfield 
temperature probe accuracy is ±1°C, the precision of the 
bath temperature measurement is ±0.1°C. As the 
viscosity accuracy is ±1.0% of the full scale range 
(according to spindle type and rotational speed), the 
allowable error during the experiment is ±3 mPas (for 
maximum spindle speed). 

4 Results and discussion 

Fig. 2 shows the example relationship between the 
apparent viscosity and shear rate of Micronal® DS 
5039 X slurry.  

 

 

 

Fig. 2. The apparent viscosities of mPCM slurries vs. shear 
rates at different concentrations. 
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Each chart represents viscosity results for a different 
temperature. In each plot, there are several curves 
corresponding to different mass ratios of Micronal® DS 
5039 X to ERGOLID EKO, namely 30%, 40%, 50%, 
60% 70%, 80% and 90%, respectively. Two specific 
fluids and its viscosities are given as a baseline for the 
purpose of comparison with obtained results. In Fig. 2 
they are displayed with dashed line. First viscosity is the 
viscosity of a base fluid, which is propylene glycol- 
water mixture with glycol to water quantity at the same 
level as in solution of Micronal DS 5039 X / 
ERGOLID EKO with ratio 30:70, it is designated for 
convenience as glycol ‘30’. Second viscosity is by 
analogy, that of base fluid containing the same amount 
of glycol to water as solution Micronal DS 5039 X / 
ERGOLID EKO with ratio 90:10. 

It was observed that, the apparent viscosity of 90% 
Micronal® DS 5039 X slurry is approximately several 
hundred times that of solution of propylene glycol with 
water at 10°C to several dozen times that of solution of 
propylene glycol with water at 50°C (not presented 
here).  

It can be seen from Fig. 2 that, for each temperature 
of the experiment, the apparent viscosity increases 
exponentially with the concentration of PCM 
microcapsules. It is observed that when increasing the 
shear rate, the apparent viscosity decreases to the 
Newtonian plateau, where the viscosity seems to be 
constant. This shear-thinning behaviour has also been 
found in the majority of the works in this field found in 
the literature [5–7,12,13].  

Fig. 3 presents the results of one’s own research and 
the results of tests according to [3]. This research study 
[3] was carried out using another BASF Micronal® DS 
5008 X product. The viscosity of the 25% aqueous 
suspension was measured at 15°C. According to the 
comparison of test results, Micronal® DS 5008 X’s 
apparent viscosity characteristics are faster, while the 
viscosity of this suspension is comparable to the 70% 
viscosity of the Micronal® DS 5039 X suspension. 

 

 
Fig. 3. View of apparent viscosity characteristics for mPCM 
slurries at different concentrations. 

 
The results of one’s own research indicate that shear-

thinning behaviour is valid for every case except for the 
slurry with 30% concentration. In this particular case, 
mPCM slurry may be considered as a Newtonian fluid in 
the whole range of shear rate. This fact is confirmed by a 

detailed visual inspection of the characteristics obtained 
for other temperature values (not presented here). 

Another regularity can be observed. With an 
increasing shear rate, apparent viscosity drops rapidly at 
first, then becomes lower until the value of apparent 
viscosity does not change much. The slurries under 
examination in the experiment were in the range of 
pseudoplastic fluids. This shear thinning behavior can be 
explained through the spatial layout of the microcapsules 
in suspension. When a slurry is stable and at rest, the 
particles are dispersed randomly in the continuous phase. 
When the slurry begins to be sheared, there is no 
cooperative motion between the microcapsules. The 
capsules move in an unorganized manner, not 
necessarily in accordance with the bulk flow direction 
and therefore the apparent viscosity is high. When the 
slurry is sheared at high shear rates, the microcapsules 
start to move in layers that form in parallel to the main 
flow. Due to this, the average distance between 
microcapsules decreases in the direction of flow and 
increases in the direction perpendicular to it. This change 
of the spatial layout makes the motion much easier, 
which can be observed as a decrease in viscosity [2]. 

It may be seen from Figs. 2 and 3 that after 
exceeding a certain value of shear rate, the decrease in 
apparent viscosity becomes less prominent and apparent 
viscosity drops in a linear fashion or becomes constant. 
The higher the slurry temperature, the lower this 
threshold shear rate. When the sample temperature was 
50°C, a linear characteristic is displayed after exceeding 
a shear rate of 30÷40 s-1, and for a sample at 20°C, this 
threshold shear rate is between 40÷60 s-1. This shear 
thinning behaviour has been explained by Delgado et al. 
[2] in relation to microcapsules. It is stated that when 
microcapsules are randomly dispersed in a base fluid in a 
stagnation condition, the apparent viscosity is high. 
When approaching higher shear rates, the particles form 
layers with a low distance between particles in the flow 
direction and high distance between various layers. This 
effectively lowers friction between layers and, therefore, 
apparent viscosity. The phenomenon observed in Figs. 2 
and 3 shows that with the higher temperature of sample, 
the transition to the Newtonian plateau is quicker as the 
formation of the abovementioned layers occurs much 
earlier. This may be caused by lower viscosity of the 
carrier fluid itself at higher temperatures. 

5 Apparent viscosity of slurry – 
predictive model  
There are many formulas that serve to describe the 
viscosity of non-Newtonian fluids. Some of them, in 
their original or modified form, take into account the 
influence of concentration (equations based on Einstein's 
Brownian motion theory [17,18]), the influence of 
temperature (equations originating from Arrhenius's law 
[19–23]), or the impact of the shear rate (as the Ostwald 
equation [24–26] also known as the Power-law model). 
It is known that all the above-mentioned factors highly 
influence viscosity. 
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In present work, the viscosity of slurry created from 
Micronal® DS 5039 X product and an aqueous solution 
of propylene glycol was calculated according to a 
modified Vogel-Tamman-Fulcher equation: 

 𝜇 = 𝑒𝑒𝑒 �𝐵1 + 𝐵2
𝑇

+ 𝐵3
𝑇2
�, (1) 

where µ is the viscosity of fluid, T [K] its temperature 
and Bi=1,2,3  dimensionless fitting coefficients. On the one 
hand, a second-order term was added [20] to obtain a 
better fit between the experimental and calculated 
viscosity data. On the other hand, several researchers 
[21,22,27,28] have used a fitting coefficients Bi as a 
function of the components concentration φ: 

 𝐵𝑖 = 𝑏𝑖1 + 𝑏𝑖2 ∙ ∅ + 𝑏𝑖3 ∙ ∅2, (2) 

where bi1, bi2, bi3 are empirical constants (fitting 
parameters). 

The values of dimensionless  parameters for the 
model of viscosity were acquired by least-squares 
regression method. The regressed values are summarized 
as below: 

 �
𝐵1 = 0.47 − 1,97 ∙ ∅ + 22.5 ∙ ∅2

𝐵2 = 38.9 − 13.62 ∙ ∅ − 5.48 ∙ ∅2

𝐵3 = −125 − 640 ∙ ∅ + 1500 ∙ ∅2
 . (3) 

 In addition to the obtained values of bij coefficients, 
the value of mean absolute error MAE was calculated. 
The MAE describes average model performance error 

  𝑀𝑀𝑀 % = 100
𝑁

 ∙ ∑ ��𝜇𝑡ℎ−𝜇𝑒𝑒𝑒�
𝜇𝑒𝑒𝑒

�𝑁
1 ;  (4) 

where N - sample count. The mean absolute error for 
investigated cases is MAE = 10.76%. 

Fig. 4 presents a comparison of the calculation results 
of dynamic viscosity according to the dependences (1) 
and (3) with the results of experimental research. An 
analysis of over 1250 cases shows that 85.1% of the 
results were calculated with a deviation of less than ± 
20%. 

 

 

Fig. 4. The comparison of the calculation results of viscosity 
with the results of experimental research. 

 

6 Conclusions 

Experimental investigations were carried out to 
investigate the microencapsulated phase change slurries 
(Micronal® DS 5039 X – aqueous solution of propylene 
glycol) in terms of their rheological properties. The 
Brookfield DV-II+ Pro rotation viscometer (Brookfield 
Co., Ltd., USA) with the small sample adapter, 
consisting of a cylindrical sample chamber and spindle 
coupled with circulating water bath was used for 
measuring viscosity equipment. Experiments were 
conducted on seven types of mPCM slurry with the 
following mass ratios of Micronal® DS 5039 X to 
aqueous solution of propylene glycol: 30:70, 40:60, 
50:50, 60:40, 70:30, 80:20 and 90:10. The apparent 
viscosity-shear rate curves were obtained through a shear 
rate from 0.0132 s-1 up to 132.00 s-1. The following 
conclusions of these experimental investigations may be 
drawn: 
1) The apparent viscosity of Micronal® DS 5039 X – 

aqueous solution of propylene glycol slurries 
increased with a rising mPCM concentration.  

2) With an increasing shear rate, the apparent viscosity 
of slurry decreases to the Newtonian plateau, where 
the viscosity seems to be constant. The higher the 
concentration, the lower the shear rate value becomes 
a threshold for linear behaviour. The higher the 
temperature of the slurry, the lower the shear rate 
value, after which the apparent viscosity 
characteristic becomes linear or constant.  

3) Only the 30%  Micronal® DS 5039 X slurry (12.9 
wt% solid of mPCM in liquid) can be considered as a 
Newtonian fluid within the whole test region (shear 
rate 0.0132 to 132.00 s-1).  

4) The measured values of viscosity were used to 
estimate the optimal values of fitting coefficients of 
modified Vogel-Tamman-Fulcher equation.  

5) It was found that 85.1% of the results were correctly 
calculated using the proposed values of the modified 
Vogel-Tamman-Fulcher equation coefficients. 

The authors are thankful to the BASF, Germany, for supplying 
samples of Micronal® DS 5039 X. 

We would also like to thank Dr. Paul McNamara for 
conducting the linguistic verification of this article. 
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Experimental investigation on influence of microcapsules with PCM on propylene glycol rheological properties
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Abstract. This paper details an experimental study that was performed to investigate rheological properties of microencapsulated phase change slurry - mPCM (Micronal® DS 5039 X and ERGOLID EKO®- an aqueous solution of propylene glycol). Seven samples of mPCM slurry were prepared with different mass ratio of the Micronal® to the ERGOLID EKO®: 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10. The apparent viscosity-shear rate curves were obtained for spindle speed from 0.01 to 100 rpm (shear rate 0.0132 to 132.00 s-1 respectively). The steady state measurement of viscosity was carried out when the slurry reached constant temperatures, namely: 10.0; 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 40.0 and 50.00C. The apparent viscosity of slurries increases with the mPCM concentration in dispersion rises. Only the sample of 30% Micronal® may be considered as a Newtonian fluid within the test range. Increasing the shear rate ultimately causes apparent viscosity to decrease down to the Newtonian plateau, where it seems to be constant. The variation of the viscosity as a function of temperature and microcapsules concentration was accurately represented by a modified Vogel-Tamman-Fulcher equation at a mean absolute error (MAE) of 10.76%.
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1 Introduction 

Technological advancements have made mass production of capsules with a diameter of the order of micrometers available today. Hence, flow is possible for a whole dispersion of base fluid and microcapsules filled with phase-changing material. Intensive research has been undertaken to determine the thermal properties and flow characteristics of microencapsulated Phase Change Material Slurries (mPCM slurry), which are classified as Latent Functional Thermal Fluid (LFTF)[1]. LTFT is a two-phase working fluid used in heat exchange systems and is characterized by a greater heat transfer capacity (by latent heat in the phase transition temperature range) compared to conventional single-phase fluids. 

MPCM slurries offer many advantages and can be used either as thermal storage materials or heat transfer fluids due to: 1) their high storage capacity during phase change; 2) the possibility of using the same medium either to transport or to store energy, as these slurries are pumpable (thus reducing heat transfer losses); 3) heat transfer at an approximately constant temperature; 4) a high heat transfer rate due to the elevated ratio surface/volume; 5) a lower pumping power, as a consequence of the reduction in mass flow rate due to the higher heat capacity; 6) a better heat exchange than conventional heat transfer fluids, due to the decrease in fluid temperature as a consequence of the higher heat capacity. Furthermore, these novel fluids have a more advantageous thermal energy storage density than conventional systems of sensible heat storage in water, and can compete with macroencapsulated PCM tanks. Moreover, the response time may be shorter using these PCM emulsions or mPCM slurries as a storage material than with macro- encapsulated PCM. The tanks will be simpler as there is no need to macroencapsulate, thus conventional tanks can be used [2].

Viscosity plays a significant role in determining the pressure drop and characteristics of fluid flow described by Reynolds and Grashoff number (higher viscosity leads to the lower turbulence of the slurry, so the heat transfer coefficient may be lowered).

2 Previous study on mPCM slurry viscosity 

[bookmark: _GoBack]Zhang and Zao [3] experimentally investigated the thermal and rheological properties of a series of prepared mPCM slurries fabricated by dispersing micro-encapsulated PCM into water with an appropriate amount of surfactant. The mass ratio of mPCM to water and surfactant was 10:90:1, 25:75:1, 35:65:1, respectively. The mPCM slurry can be considered as Newtonian fluid when the shear rate is higher than
200 s-1 and the PCM microcapsules’ mass fraction lower than 35 wt. %. The viscosity was higher for larger particle slurries.

Delgado et al. [2] experimentally investigated the microencapsulated PCM slurry with three different PCM mass fractions (14, 20 and 30%). The studied mPCM slurry consisted of microcapsules of paraffin coated by a polymer and dispersed in water through detergents. These PCM microcapsules had a diameter range from 1 to 20 m. The viscosity - shear rate curves using a control stress rheometer were obtained through a shear sweep from 0.001 to 1000 s-1 and at a constant temperature (T = 27°C). The equation that best predicts the shape of the flow curve for the three mPCM slurries is the non-Newtonian model, namely the Carreau model.

Allouche et al. [4] investigated the 45% w/w aqueous dispersion of RT15 paraffin microcapsules supplied by CIBA chemicals (UK) while a rheological rotational rheometer (UM/MC 100 PHYSICA) was used. Experiments were performed applying constant shear rates from 10 to 500 s-1. Tests were repeated in a temperature range of 7–20°C. The rheological study revealed a non-Newtonian fluid behaviour of the PCM for different temperature settings.

Kong et al. [5] used mPCM slurries produced by Thies Technology Inc. as heat transfer fluids. The phase change material (PCM) used in the study was butyl stearate. Each microcapsule was made by encapsulating the PCM using polyurea as a shell material, which made up about 35% of the total volume of each microcapsule. The mPCM particle size range used in the experiments was between 5 and 10m in diameter. The apparent viscosity of mPCM slurries was measured using a coaxial rotating drum viscometer from Brookfield Engineering Laboratories Inc. Microencapsulated PCM slurries with 2.1, 5.9, 8.3 and 10.9 wt. %, respectively, were tested in a temperature range of 5–35°C. The viscosity was measured at three different rotational speeds of 50, 60 and 100 rpm. The experimental results showed that the viscosity of mPCM slurry is independent of the shear rate and behaves as a Newtonian fluid.

In a paper by Wang et al. [6] experimental research on the natural convective heat transfer with microencapsulated phase change material suspensions is described. The microencapsulated PCM slurry was formulated with PCM powder with N-hexadecane as the core material and a diameter range of 10  40 μm. The water–propanol mixture was the base fluid along with the addition of dispersants. The viscosity of 10  30 wt. % mPCM suspensions was measured with the TADHR-2 rheometer at a room temperature of 20 °C and shear rate of up to 100 s-1. The 10 wt. % and 20 wt. % mPCM slurry behave as Newtonian fluids while the 30 wt. % mPCM slurry shows the shear thinning non-Newtonian characteristic.

Fu et al. [7] conducted experiments on thermo-physical properties of n-tetradecane&polystyrene-silica composite nanoencapsulated phase change material slurry. The mean particle size of Tet@PS-SiO2 mPCM was 151.3 nm. The mPCM water slurry contained 5% PCM and 15 wt. % amount of antifreeze. The viscosity of the slurry was investigated by a Brookfield DV-II + Pro rotation viscometer with S61 rotor type at 100 rpm in a temperature range from 5 to 25°C. It was found that the viscosities of all slurries were slightly higher than that of the base fluid.

Generally, the mPCM slurry is considered as a Newtonian fluid when the mass fraction of mPCM is up to 30% [4–6,8,9] or when the shear rate is large enough [3]. After adding additives such as surfactant agents, the mPCM slurry stopped behaving as a non-Newtonian fluid and started behaving as a Newtonian fluid [10,11]. The viscosities of slurries rose with the increase of the mass fraction of microcapsules up to several dozen times [5–8,12–15].

The purpose of this study is to investigate the rheological properties of mPCM slurry. In this paper, an mPCM slurry made of a new product, the Micronal® DS 5039 X and ERGOLID EKO (an aqueous solution of propylene glycol) - as a base fluid, with seven different mass fractions was obtained. The study examines the effect of Micronal® DS 5039 X mass fraction on slurry viscosity along with the effect of temperature increase (10-50°C) on slurry viscosity. Detailed steady state condition characteristics and a predictive model for this property were obtained.

3 Experimental setup and procedure 

3.1 Slurry properties

Micronal® DS 5039 X (BASF) is an aqueous dispersion of microencapsulated paraffin mixture with highly cross-linked polymethyl methacrylate (PMMA) shell. According to the manufacturer the product contains: 1,2-benzisothiazol-3(2H)-one (22 ppm); 2-methyl-2H-isothiazol-3-one (22 ppm) and a (3:1) mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (13.5 ppm); and a range of particle size of 1 - 5 μm. Micronal® DS 5039 X contains 42.0-44.0% of solids in water. The main peak melting temperature of the product is around 25°C, the enthalpy of fusion (liquid) 41 kJ/kg, the latent heat (solid content) 100 kJ/kg, and the total thermal storage capacity (solid content, integral 10–30°C) 142 kJ/kg. The advantages of the special microencapsulation process that is used to manufacture Micronal® DS 5039 X are that the product is free of formaldehyde, has high mechanical stability and resistance to high temperatures, and that the polymer capsule is able to resist damage. Mechanical stability should be understood as consistency stability, colour and uniformity of the concentrate structure. A mechanically stable product should maintain the abovementioned features even after prolonged storage (several months). Micronal® DS 5039 X can be employed passively or in combination with an active cooling system. Some other Micronal® products (e.g. Micronal® DS 5001) has been incorporated in mortar, concrete or plasterboard as a passive system, while it is also used in active systems such as slurries [16].

Seven samples of mPCM slurries by mechanical mixing with the following mass ratios of Micronal® DS 5039 X to ERGOLID EKO: 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10, were prepared respectively. The ERGOLID EKO, applied as a base fluid, is a recommended in climatic conditions of Poland commercial product for usage in solar collector installations. The ERGOLID EKO contents of 37% pure propylene glycol and 63% of water with minor fraction of additives. Because Micronal® DS 5039 X contains 42.0-44.0% of solids in water, the actual mass fraction of microcapsules in the tested suspension was respectively: 12.9, 17.2, 21.5, 25.8, 30.1, 34.4 and 38.7%.

3.2 Experimental set-up

The viscosity of the slurry was investigated by a Brookfield DV-II+ Pro rotation viscometer (Brookfield Co., Ltd., USA) with a small sample adapter, consisting of a cylindrical sample chamber and spindle coupled with a PolyScience circulating water bath for temperature control (Fig. 1). The small sample adapter provides a defined geometry system for accurate viscosity measurements of small sample volumes at precise shear rates. As the SC4-18 spindle type was used for this viscometer to execute experiments, the sample injected volume was 6.7 ml. The small sample adapter’s rheologically correct cylindrical geometry provides extremely accurate viscosity measurements and shear rate determinations. The Brookﬁeld viscometer measures viscosity by measuring the force required to rotate a spindle in a ﬂuid at a speciﬁed temperature in relation to its shear rate. On the DV+II viscometer type, the viscosity can be read directly or by using the Rheocalc program installed on a computer connected to the viscometer. 
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Fig. 1. Experimental set-up: 1 - Brookfield DV-II + Pro viscometer, 2 – small sample adapter, 3 – PolyScience circulating water bath, 4 – computer with the Rheocalc program.



The sample chamber fits into a water jacket so that precise temperature control can be achieved when a circulating water bath is used. The stirring action of the rotating spindle, plus the small sample volume, helps one to keep the temperature gradient across the sample to a minimum. A direct readout of the sample temperature is provided using sample chambers with an embedded RTD sensor connected to the viscometer.

3.3 Test conditions and procedure

In this experiment, rotational tests were carried out. These tests entail applying torque (or stress) and measuring the strain, in order to obtain viscosity values. The apparent viscosity-shear rate curves were obtained through a spindle speed from 0.01 to 100 rpm (shear rate 0.0132 to 132.00 s-1 respectively). The measurement of viscosity was carried out when the slurry reached a constant temperature, namely: 10.0; 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 40.0 and 50.0°C. At a constant temperature the value of viscosity at eighteen spindle speeds was collected by the Rheocalc program after five minutes of waiting. As a tests for each temperature were repeated three times, mean value of three readings are presented in the figures. Although the Brookfield temperature probe accuracy is ±1°C, the precision of the bath temperature measurement is ±0.1°C. As the viscosity accuracy is ±1.0% of the full scale range (according to spindle type and rotational speed), the allowable error during the experiment is 3 mPas (for maximum spindle speed).

4 Results and discussion

Fig. 2 shows the example relationship between the apparent viscosity and shear rate of Micronal® DS 5039 X slurry. 
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Fig. 2. The apparent viscosities of mPCM slurries vs. shear rates at different concentrations.

Each chart represents viscosity results for a different temperature. In each plot, there are several curves corresponding to different mass ratios of Micronal® DS 5039 X to ERGOLID EKO, namely 30%, 40%, 50%, 60% 70%, 80% and 90%, respectively. Two specific fluids and its viscosities are given as a baseline for the purpose of comparison with obtained results. In Fig. 2 they are displayed with dashed line. First viscosity is the viscosity of a base fluid, which is propylene glycol- water mixture with glycol to water quantity at the same level as in solution of Micronal DS 5039 X / ERGOLID EKO with ratio 30:70, it is designated for convenience as glycol ‘30’. Second viscosity is by analogy, that of base fluid containing the same amount of glycol to water as solution Micronal DS 5039 X / ERGOLID EKO with ratio 90:10.

It was observed that, the apparent viscosity of 90% Micronal® DS 5039 X slurry is approximately several hundred times that of solution of propylene glycol with water at 10°C to several dozen times that of solution of propylene glycol with water at 50°C (not presented here). 

It can be seen from Fig. 2 that, for each temperature of the experiment, the apparent viscosity increases exponentially with the concentration of PCM microcapsules. It is observed that when increasing the shear rate, the apparent viscosity decreases to the Newtonian plateau, where the viscosity seems to be constant. This shear-thinning behaviour has also been found in the majority of the works in this field found in the literature [5–7,12,13]. 

Fig. 3 presents the results of one’s own research and the results of tests according to [3]. This research study [3] was carried out using another BASF Micronal® DS 5008 X product. The viscosity of the 25% aqueous suspension was measured at 15°C. According to the comparison of test results, Micronal® DS 5008 X’s apparent viscosity characteristics are faster, while the viscosity of this suspension is comparable to the 70% viscosity of the Micronal® DS 5039 X suspension.



[image: ]

Fig. 3. View of apparent viscosity characteristics for mPCM slurries at different concentrations.



The results of one’s own research indicate that shear-thinning behaviour is valid for every case except for the slurry with 30% concentration. In this particular case, mPCM slurry may be considered as a Newtonian fluid in the whole range of shear rate. This fact is confirmed by a detailed visual inspection of the characteristics obtained for other temperature values (not presented here).

Another regularity can be observed. With an increasing shear rate, apparent viscosity drops rapidly at first, then becomes lower until the value of apparent viscosity does not change much. The slurries under examination in the experiment were in the range of pseudoplastic fluids. This shear thinning behavior can be explained through the spatial layout of the microcapsules in suspension. When a slurry is stable and at rest, the particles are dispersed randomly in the continuous phase. When the slurry begins to be sheared, there is no cooperative motion between the microcapsules. The capsules move in an unorganized manner, not necessarily in accordance with the bulk flow direction and therefore the apparent viscosity is high. When the slurry is sheared at high shear rates, the microcapsules start to move in layers that form in parallel to the main flow. Due to this, the average distance between microcapsules decreases in the direction of flow and increases in the direction perpendicular to it. This change of the spatial layout makes the motion much easier, which can be observed as a decrease in viscosity [2].

It may be seen from Figs. 2 and 3 that after exceeding a certain value of shear rate, the decrease in apparent viscosity becomes less prominent and apparent viscosity drops in a linear fashion or becomes constant. The higher the slurry temperature, the lower this threshold shear rate. When the sample temperature was 50°C, a linear characteristic is displayed after exceeding a shear rate of 3040 s-1, and for a sample at 20°C, this threshold shear rate is between 4060 s-1. This shear thinning behaviour has been explained by Delgado et al. [2] in relation to microcapsules. It is stated that when microcapsules are randomly dispersed in a base fluid in a stagnation condition, the apparent viscosity is high. When approaching higher shear rates, the particles form layers with a low distance between particles in the flow direction and high distance between various layers. This effectively lowers friction between layers and, therefore, apparent viscosity. The phenomenon observed in Figs. 2 and 3 shows that with the higher temperature of sample, the transition to the Newtonian plateau is quicker as the formation of the abovementioned layers occurs much earlier. This may be caused by lower viscosity of the carrier fluid itself at higher temperatures.

5 Apparent viscosity of slurry – predictive model 

There are many formulas that serve to describe the viscosity of non-Newtonian fluids. Some of them, in their original or modified form, take into account the influence of concentration (equations based on Einstein's Brownian motion theory [17,18]), the influence of temperature (equations originating from Arrhenius's law [19–23]), or the impact of the shear rate (as the Ostwald equation [24–26] also known as the Power-law model). It is known that all the above-mentioned factors highly influence viscosity.

In present work, the viscosity of slurry created from Micronal® DS 5039 X product and an aqueous solution of propylene glycol was calculated according to a modified Vogel-Tamman-Fulcher equation:

	,	(1)

where  is the viscosity of fluid, T [K] its temperature and Bi=1,2,3  dimensionless fitting coefficients. On the one hand, a second-order term was added [20] to obtain a better fit between the experimental and calculated viscosity data. On the other hand, several researchers [21,22,27,28] have used a fitting coefficients Bi as a function of the components concentration :

	,	(2)

where bi1, bi2, bi3 are empirical constants (fitting parameters).

The values of dimensionless  parameters for the model of viscosity were acquired by least-squares regression method. The regressed values are summarized as below:

	.	(3)

 In addition to the obtained values of bij coefficients, the value of mean absolute error MAE was calculated. The MAE describes average model performance error

	 ; 	(4)

where N - sample count. The mean absolute error for investigated cases is MAE = 10.76%.

Fig. 4 presents a comparison of the calculation results of dynamic viscosity according to the dependences (1) and (3) with the results of experimental research. An analysis of over 1250 cases shows that 85.1% of the results were calculated with a deviation of less than ± 20%.
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Fig. 4. The comparison of the calculation results of viscosity with the results of experimental research.



6 Conclusions

Experimental investigations were carried out to investigate the microencapsulated phase change slurries (Micronal® DS 5039 X – aqueous solution of propylene glycol) in terms of their rheological properties. The Brookfield DV-II+ Pro rotation viscometer (Brookfield Co., Ltd., USA) with the small sample adapter, consisting of a cylindrical sample chamber and spindle coupled with circulating water bath was used for measuring viscosity equipment. Experiments were conducted on seven types of mPCM slurry with the following mass ratios of Micronal® DS 5039 X to aqueous solution of propylene glycol: 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10. The apparent viscosity-shear rate curves were obtained through a shear rate from 0.0132 s-1 up to 132.00 s-1. The following conclusions of these experimental investigations may be drawn:

1) The apparent viscosity of Micronal® DS 5039 X – aqueous solution of propylene glycol slurries increased with a rising mPCM concentration. 

2) With an increasing shear rate, the apparent viscosity of slurry decreases to the Newtonian plateau, where the viscosity seems to be constant. The higher the concentration, the lower the shear rate value becomes a threshold for linear behaviour. The higher the temperature of the slurry, the lower the shear rate value, after which the apparent viscosity characteristic becomes linear or constant. 

3) Only the 30%  Micronal® DS 5039 X slurry (12.9 wt% solid of mPCM in liquid) can be considered as a Newtonian fluid within the whole test region (shear rate 0.0132 to 132.00 s-1). 

4) The measured values of viscosity were used to estimate the optimal values of fitting coefficients of modified Vogel-Tamman-Fulcher equation. 

5) It was found that 85.1% of the results were correctly calculated using the proposed values of the modified Vogel-Tamman-Fulcher equation coefficients.

The authors are thankful to the BASF, Germany, for supplying samples of Micronal® DS 5039 X.

We would also like to thank Dr. Paul McNamara for conducting the linguistic verification of this article.
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