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Abstract. The usual thermal design and rating methods [1, 2] for heat exchangers neglect axial wall heat 
conduction in the separating walls and external shells of recuperators and in the solid matrix of regenerators. 
This may lead to undesirable undersizing. In this paper a simplified model is developed for the fast 
estimation of axial wall conduction effects in counterflow, parallel flow and mixed-mixed cross-flow 
recuperators. The dispersion model [3] is used to describe the performance deterioration of the exchanger 
with an effective fluid dispersion Peclet number for the correction of the heat transfer coefficients or mean 
temperature difference. The method is tested against analytical and numerical calculations for counterflow 
and parallel flow with good results. It is also shown how the method can be adapted to thermal regenerators 
and the related thermal calculation methods [1, 2]. An alternative approach is suggested for the 
consideration of lateral heat conduction resistance in the solid matrix. 

1 Introduction  
The usual simple heat exchanger design and rating 
methods [1, 2] neglect the negative effect of axial heat 
conduction in the separating wall and the outer shells as 
well as in the solid matrix of regenerators. This may lead 
to undesirable underdesign. Kroeger [4] was the first to 
present an analytical closed form solution for balanced 
and unbalanced counterflow with axial conduction in the 
separating wall with adiabatic ends. Recently Aminuddin 
and Zubair [5] published several analytical solutions and 
calculated results on the performance of counterflow 
heat exchangers with consideration of axial heat 
conduction in the separating wall and heat losses from 
the shell to the vicinity. They assumed various realistic 
boundary conditions at the wall ends which are useful 
for the application of the solutions to the cell method or 
to series connections of exchangers. 

In this paper a simple approximation is developed for 
the fast estimation of the performance deterioration due 
to axial heat conduction not only in the separating wall 
but also in the outer shells. Heat losses to the vicinity are 
neglected. Since axial wall heat conduction has a similar 
effect as axial fluid dispersion, the dispersion model [3] 
is used in the approximation method. First counterflow 
and parallel flow recuperators are considered. 

2 System of governing differential 
equations  
The steady state heat transfer process in a counterflow or 
parallel flow heat exchanger with adiabatic outside 
surface and axial wall heat conduction can be described 

with the following system of ordinary differential 
equations: 
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The number of transfer units Ni of fluids i = 1,2 
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are formed with the individual heat transfer coefficients 
alone, where ai Ai describes the heat exchange of fluid i 
with the separating wall and aai Aai the exchange with 
the inside surface of the outer wall or shell. 

The wall Peclet numbers Pew are defined for the 
separating wall and the outer wall as 
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For counterflow and parallel flow L1 = L2 = L and 
λw1 Aqw1 = λw2 Aqw2 = λw Aqw. In eq (2) the positive sign is 
for counterflow and the negative sign for parallel flow. 

The boundary conditions and further conditions in 
brackets are: 
 
Counterflow 
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Parallel flow 
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Counterflow and parallel flow 
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The system of five ordinary differential equations of 
first and second order together with the required eight 
boundary conditions are implemented into the numeric 
computing environment of the mathematical software 
Maple for counterflow and parallel flow, respectively. 
The resulting real-valued two-point (x = 0 and x = 1) 
boundary value problems are solved by a finite 
difference method based on the trapezoidal scheme with 
Richardson extrapolation enhancing the accuracy [6]. 
The numerical solutions and analytical solutions of 
Kroeger [4] for special cases are used for the test of the 
approximation method developed in this paper. 

3 Infinite thermal conductivities of the 
walls 
First the most disadvantageous case of infinite thermal 
conductivities of the walls is considered. The wall Peclet 
numbers become zero and the system of differential 
equations, eqs (1) – (4), reduces to eqs (1) and (2). The 
wall temperatures tw, twa1 and twa2 take constant values. 
The following equation has been derived for the 
calculation of P1 = P1,0 with index 0 for zero wall Peclet 
numbers. 
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This equation is valid for counterflow, parallel flow 
and any flow arrangement. The indices 1 and 2 can be 
exchanged. In the limiting case ∞=2W , R1 = N2 = Na2 = 
0 the right hand side term in eq (11) turns to R1/N2 = 

( )221 AW a . For Na1 = Na2 = ∞, eq (11) applies to the two-
sided stirred tank [1, 2]. 

 

4 Weak wall heat conduction effects 
The limiting case of very low thermal wall conductivities 
(λw→0, λwa1→0, λwa2→0) is considered in which fluid 
and wall temperatures do not change remarkably. The 
wall temperatures of the outside walls assume the 
temperature of the adjacent fluid i = 1,2, Twa,i = Ti, as the 
outside surface is adiabatic. So the local axial conductive 
heat flows in the outer walls a,i = a,1 and a,2 are 
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With the local temperature of the separating wall 
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the local conductive heat flow in this wall can be 
expressed as 
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The substitutive effective axial dispersive heat flows 
in fluids i = 1,2 are 
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The basic idea of this model is to shift the conductive 
axial heat flows from the walls into the adjacent fluids. 
This yields effective Peclet numbers for the dispersion 
model. Since the separating wall is in contact with both 
fluids, its heat flow has to be distributed according to the 
(unknown) fractions ϕ1 for fluid 1 and ϕ2 = 1 – ϕ1 for 
fluid 2. The substitutive dispersive heat flows are 
accordingly expressed as 

 1,11, wawd QQQ  +=ϕ , (16) 

 2,22, wawd QQQ  +=ϕ . (17) 

The eqs (16) and (17) represent the basic concept of 
the model for weak conductive effects. Substituting eqs 
(12), (14) and (15) into eqs (16) and (17) and rearranging 
yields 
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The positive sign is for counterflow and the negative 
sign for parallel flow. The negative sign occurs as for 
parallel flow dT2/dT1 ≤ 0. The Peclet numbers Pe1 and 
Pe2 could be used if the fractions ϕ1 and ϕ2 were known. 
They are determined in the following. 

The overall conductive effect can be expressed with 
the dimensionless dispersive mean temperature 
difference [3] 
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This equation defines also Pe = Pe1,2 which is equal for 
both the fluids. The deteriorative conduction effect 
should yield positive values Pe = Pe1,2 > 0 for all cases of 
counterflow and parallel flow. 

Multiplying eqs (18) and (19) by P1 and P2, 
respectively, summation of both equations and dividing 
by P1 yields with P2/P1 = R1 
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This equation reveals that the condition Pe > 0 can only 
be fulfilled throughout if 
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Substituting eq (22) into eq (21) finally yields 
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The eq (23) remains valid if the indices 1 and 2 are 
exchanged. The positive sign is for counterflow and the 
negative sign is for parallel flow. The dispersive Peclet 
number Pe has to be applied to both fluids. 

Substituting eq (22) into eqs (18) and (19) yields 
formulas for Pe1 and Pe2 which have to be applied to 
fluid 1 and fluid 2, respectively. 

With counterflow Pe1 > 0 and Pe2 > 0, which means 
that, owing to wall heat conduction, for fixed inlet and 
outlet temperatures the mean temperature difference 
θm = T1m – T2m decreases, the mean temperature T1m 
decreases and T2m increases. 

With parallel flow one of the Peclet numbers may be 
negative. If e.g. Pewa,1 = Pewa,2 = ∞ (no outer wall effect) 
and N1 > N2, then Pe1 > 0 and Pe2 < 0. This means that in 
this case θm = T1m – T2m decreases, T1m decreases and T2m 

decreases as well, but less than T1m. This is in qualitative 
accordance with the real process. 

The application of Pe1 and Pe2 from eqs (18), (19) 
and (22) gives the same results as Pe from eq (23). The 
two Peclet numbers Pe1 and Pe2 yield more insight in the 
process, applying only one Peclet number Pe according 
to eq (23) is more appropriate for the approximation 
method developed in the following. 

5 Approximation equation for Pe 
The relative error of Pe from eq (23) decreases with 
increasing values of the wall Peclet numbers and the 
resulting Pe for both fluids. For lower values of Pe 
eq (23) provides too low values of Pe. In the limiting 
case Pew = Pewa,1 = Pewa,2 = 0 eq (23) gives the wrong 
result Pe = 0. This case has been investigated in section 3 
and the correct value of Pe = Pe0 can be calculated from 
eq (20). Substituting in eq (20) Θd according to the well 
known relationship for any flow arrangement with or 
without dispersion 
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yields the formula for the calculation of Pe = Pe0: 
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In eq (25) Pe1,0 is determined from eq (11) and Θlg is 
the dimensionless logarithmic mean temperature 
difference for counterflow or parallel flow, respectively, 
calculated with P1,0 and R1. 

The eqs (20) and (25) are also exactly valid for the 
pure cross-flow and are approximations for other one-
pass flow arrangements, if Θlg is replaced by the correct 
mean temperature difference for the flow arrangement 
under consideration. 

With the limiting Peclet number Pe0 from eq (25) and 
the Peclet number from eq (23) which is now denoted 
with Pe∞ the approximation equation is formed 

 ( ) mmm
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which yields exact values of Pe for Pe∞ = ∞ and for 
Pe∞ = 0. 

The comparison of eq (26) with analytical and 
numerical results from eqs (1) – (10) provides a value of 
m = 0.87. In the range 5 ≤ Pe ≤ 23 for counterflow and 
9 ≤ Pe ≤ 140 for parallel flow the mean relative error of 
Pe is about 5 % and the mean relative error of P1 or P2, 
calculated with Pe, is about 0.5 %. 

The temperature change P1 can be calculated by 
correcting the overall heat transfer coefficient (kA) 
according to 
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and applying the corrected value (kA)λ to the known 
formulas for counterflow and parallel flow. Other ways 
are possible as shown in [3]. 

6 Application of the model to mixed-
mixed cross-flow 
The eqs (11) and (24) – (26) can directly be applied to 
mixed-mixed cross-flow. Only the eq (23) has to be 
replaced by a new equation and in eq (25) Θlg has to be 
replaced by the mean temperature difference for mixed-
mixed cross-flow. 

Now in the separating wall axial heat conduction 
takes place in the two flow directions and both the flow 
lengths Li may be different. So in the wall Peclet 
numbers usually L1 ≠ L2 and λw1 Aqw1 ≠ λw2 Aqw2 (see eq 
(7)). 

Applying again the principle of shifting the 
conductive heat flows into the fluids leads to the 
following equation of Pe = Pe∞: 
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Using eq (28) and (29) the eq (23) for 
counterflow (+) and parallel flow (-) can be rearranged 
to a similar form: 
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In the limiting cases of one constant fluid 
temperature, ψ1 = ∞ or ψ2 = ∞, the eqs (30) and (31) 
become identical. Since both equations have been 
derived according to the same model they should reach 
approximately the same accuracy, also in the general 
case ψ1 < ∞ and ψ2 < ∞. 

Using the Peclet numbers Pe(30) from eq (30) and 
Pe(31,±) from eq (31) enables the general presentation: 
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with 

a = 0 : Parallel flow 
a = 1/2 : Mixed-mixed cross-flow 
a = 1 : Counterflow. 

Other one-pass symmetrical flow arrangements may be 
described with individual values of 0 ≤ a ≤ 1. 

7 Application of the model to 
regenerators under steady periodic 
operation 
The method derived for counterflow and parallel flow 
recuperators can also be adapted and applied to fixed-
bed and rotary regenerators. The outer walls are 
considered as part of the solid matrix and need not be 
considered separately. 

7.1 Infinite axial thermal conductivity of the 
solid matrix 

This limiting case corresponds to the steady state heat 
transfer process in two mixed-unmixed cross-flow heat 
exchangers coupled by a circulating transversely mixed 
flow stream [7, 8]. The temperature change P1 
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with the fluid to solid matrix capacity ratios: 
 
For the fixed-bed regenerator 
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The capacity Cs,i in eq (34) is the capacity of one 
matrix “i” and Cs,t in eq (35) is the total capacity of the 
rotating matrix. The time τi is the duration of period “i” 
and the sum (τ1 + τ2) in eq (35) is the duration of one 
revolution of the matrix. 

The numbers of transfer units N1 and N2 in eq (33) 
are formed with the corrected heat transfer coefficients 
ai,o according to 

 
sisioi λ
δφ

aaaa
+=+=

1111

,

. (36) 

They take the lateral heat conduction resistance inside 
the solid matrix into account. The estimation of the 
additional resistance 1/as = φ δ/λs is subject to Hausen’s 
theory of regenerators [9, 1, 2] and will be discussed 
later in this paper. 

Once the temperature change P1 is determined from 
eq (33), the Peclet number for λs = ∞ can be calculated. 
For regenerators the previous eq (25) has to be replaced 
by 
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For rotary regenerators: 
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For fixed-bed regenerators: 
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The correction factor k/k0, which is in reality a correction 
of the mean temperature difference, takes the deviations 
of the time averaged longitudinal temperature profiles in 
the regenerator from those in the equivalent counterflow 
recuperator into account. This correction has been and 
still is discussed and calculated by many researchers [9, 
10]. It is calculated for a solid matrix with infinite lateral 
and zero axial thermal conductivity. Results are given in 
the relevant literature [9, 10]. 

7.2 Low axial thermal conductivity of the solid 
matrix 

The previous eqs (23) or (31), (28) and (29) can directly 
be applied using the following definitions of the wall 
Peclet numbers. 
 
Fixed-bed regenerator: 
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Rotary regenerator: 

 
tqss

i
iswi A

LW

,
,PePe

λ


==  (41) 

The cross-section for heat conduction Aqs,i in eq (40) 
belongs to the one solid matrix „i” under consideration. 
The cross-section Aqs,t in eq (41) is the total axial cross-
section of the rotating solid matrix. 

The products aiAi in eqs (23), (28) and (29) have to 
be substituted according to 
 
Fixed-bed regenerator: 

 iiii AA 0,aa =  (42) 

Rotary regenerator: 

 iiii A τaa 0,=  (43) 

 

7.3 Final correction for axial solid matrix 
conduction 

With Pe0 from eq (37), considering eqs (33) – (39), and 
with Pe∞ from eqs (23) and eqs (40) – (43) the final 
Peclet number can be calculated using eq (26). Then eq 
(27) is applied to the correction of the overall heat 
transfer coefficient (kA). 
 
For the rotary regenerator 
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and eq (27) yields the corrected value (kA)λ. In eq (44) 
A1 and A2 are the actual heat transfer surfaces in the hot 
and cold section. 
For the fixed-bed regenerator eq (27) has to be adapted 
to the definitions in Hausen’s theory [9, 1, 2] leading to 
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The surface A in eq (45) is the heat transfer surface of 
one solid matrix. 

If inlet and mean outlet temperatures are given, eq 
(20) can be used for the correction of the mean 
temperature difference instead of eq (27) [3]. 

7.4 Consideration of lateral conductive 
resistance in solid matrix 

7.4.1 Equivalent wall thickness 
The function φ in eq (36) can be calculated according to 
Hausen [9, 1, 2] for the plane wall of thickness δ, for the 
cylinder of diameter δ and the sphere of diameter δ. For 
other geometries Hausen introduced the equivalent wall 
thickness 
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to be used in the equations for the plane wall. 
A new formula for the equivalent wall thickness is 

proposed which gives better agreement with exact 
calculations for spherical elements than eq (46) 
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For the cylinder eqs (46) and (47) yield the same results. 
 
7.4.2 Alternative calculation model 
In the theory on thermal regenerators [9, 10] the transient 
process is calculated under the assumption of zero axial 
and infinite lateral thermal conductivity or zero wall 
thickness, 0=seq λδ . If 0>seq λδ  the additional 

resistance sa1  from eq (36) is added. 
According to previous investigations on temperature 

oscillation heat transfer processes [11], not only the heat 
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transfer coefficient has to be corrected (eq (36)) but also 
the wall thickness or the capacity of the elements. (Index 
s in this paper is index w in ref [11].) If 0>seq λδ  the 

reduced effective capacity ss CC ≤
~  should be used for 

the determination of Hausen’s reduced period Π [9, 10]. 
The reduction XXCC ss

~~
=  and the related heat 

transfer resistance sa1  can be calculated according to 
the temperature oscillation model [11]. The relevant 
equations are given in the appendix. The resulting values 
of sa  are equal to or a few percent lower than those of 
Hausen’s approach. The required capacity reduction 
yields another minor or negligible correction on the safe 
side. The limiting case of infinite storage capacity does 
no longer occur. 

8 Conclusions 
1. The effect of axial heat conduction in the walls of 

recuperators and in the solid matrix of regenerators can 
be described and estimated with the axial dispersion 
model and an effective dispersive Peclet number. 

2. The derived approximation model can be applied to 
counterflow, parallel flow and mixed-mixed cross-flow 
recuperators as well as counterflow and parallel flow 
regenerators. 

3. The effect of lateral heat conduction in the solid 
matrix of regenerators can be described with a 
temperature oscillation model, developed earlier for the 
evaluation of temperature oscillation experiments [11]. 
A new formula for Hausen’s equivalent wall thickness 
[1, 2, 9] can improve and simplify the calculation 
methods for regenerators. 
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Appendix 

1 Calculation of as in eq (36) according to the 
oscillation model [11] 

Equivalent wall thickness 
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Dimensionless equivalent wall thickness 
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eq

s
eq

 (A3) 

Equivalent Nußelt number 

 XX
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V
ss

eq

ss
eqs

~uN~Nu,Nu , =






=
λ
a  (A4) 

 ( )
( )( )XXXX

XXX
eqs 22

22

, cossinh2sin2sinh
2sin2sinhNu
+−

+
=  (A5) 

Application of eqs (A2), (A3), (A5) and (A4) yields wa  
as function of δ and ( )AVs . For the cylinder 

( )cylscyl AV4=δ . For the sphere ( )sphssph AV6=δ . 
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2 Calculation of the reduced effective capacity 

sC~  according to ref [11] 

Effective capacity ratio 

 
X
X

V
V

C
C

s

s

s

s
~~~

==  (A6) 

For the plane wall 

 
( )( )XXXXX

XX
X
X

22

22

cos2sinh2sin2sinh2
2sin2sinh~

++
+

= (A7) 

Instead of eq (A2) the following eq (A8) is 
recommended for the application to eq (A7) 

 







+

+
+

=








seqs V
A

X
X

XV
A

87.0
2

87.0
87.0

*

δ
 (A8) 

For precise calculations of cylinder and sphere                  
( wa  and sC~ ) use the equations (A3) and (A4) in the 
appendix of ref [11]. 

Nomenclature 
A – area, m2, 
a – variable, eq (32), 
C – heat capacity, J/K, 
k  – overall heat transfer coefficient, W/(m2K), 
L, l – flow length, m, 
m – exponent, eq (26) 
N – number of transfer units, formed with heat transfer 
    coefficient, WAN a= , 

Nu – Nußelt number, 





=

A
V

λ
aNu , eq (A4), 

NTU – number of transfer units, WkA  , 
P1 – dimensionless temperature change 

    of flow stream 1, 
inin

outin

TT
TT

P
,2,1

,1,1
1 −

−
= , 

P2 – dimensionless temperature change 

    of flow stream 2, 
inin

inout

TT
TT

P
,2,1

,2,2
2 −

−
= , 

Pe – Peclet number for fluid dispersion, 

    ( )qd ALW λ=Pe , 

Pew – wall Peclet number, ( )qwww ALW λ=Pe , 

Q  – heat flow stream, W, 

R – capacity ratio, 2211 1 RWWR ==  , 

    for fixed bed regenerators 
222

11
1

1
RW

WR ==
τ
τ




, 

T  – temperature, K, 
V – volume, m3, 
W  – heat capacity rate, W/K, 
X – dimensionless wall thickness, eq (A3), 
x – dimensionless flow length, x = l/L 
 
Greek symbols 
a – heat transfer coefficient, W/(m2K), 
δ – wall thickness or diameter, m, 
Θ  – dimensionless mean temperature difference, 
    ( )ininM TTT ,2,1 −∆=Θ , 

λ  – thermal conductivity, W/(m⋅K), 
Π – reduced period of regenerator, 
τ – duration or period, s, 
φ – function, eq (36), 
ϕ – fraction, eqs (16) and (17), 
ψ – dummy variable, eqs (28) and (29) 
 
Subscripts and superscripts 
a – outside, 
cyl – cylinder, 
d – dispersive, 
eq – equivalent, 
i  – counter, 
lg – logarithmic, 
m – mean value, 
q – cross-section, 
s – solid matrix, 
sph – sphere, 
t – total, 
w – wall, 
λ – corrected for heat conduction, 
0 – corrected for conductive resistance, or zero wall 
    Peclet number, 
∞ – infinite wall Peclet number, 
1, 2 – fluid 1, 2, 
~ – effective reduced value 
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Thermal calculation of heat exchangers with simplified consideration of axial wall heat conduction
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Abstract. The usual thermal design and rating methods [1, 2] for heat exchangers neglect axial wall heat conduction in the separating walls and external shells of recuperators and in the solid matrix of regenerators. This may lead to undesirable undersizing. In this paper a simplified model is developed for the fast estimation of axial wall conduction effects in counterflow, parallel flow and mixed-mixed cross-flow recuperators. The dispersion model [3] is used to describe the performance deterioration of the exchanger with an effective fluid dispersion Peclet number for the correction of the heat transfer coefficients or mean temperature difference. The method is tested against analytical and numerical calculations for counterflow and parallel flow with good results. It is also shown how the method can be adapted to thermal regenerators and the related thermal calculation methods [1, 2]. An alternative approach is suggested for the consideration of lateral heat conduction resistance in the solid matrix.
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1 Introduction 

The usual simple heat exchanger design and rating methods [1, 2] neglect the negative effect of axial heat conduction in the separating wall and the outer shells as well as in the solid matrix of regenerators. This may lead to undesirable underdesign. Kroeger [4] was the first to present an analytical closed form solution for balanced and unbalanced counterflow with axial conduction in the separating wall with adiabatic ends. Recently Aminuddin and Zubair [5] published several analytical solutions and calculated results on the performance of counterflow heat exchangers with consideration of axial heat conduction in the separating wall and heat losses from the shell to the vicinity. They assumed various realistic boundary conditions at the wall ends which are useful for the application of the solutions to the cell method or to series connections of exchangers.

In this paper a simple approximation is developed for the fast estimation of the performance deterioration due to axial heat conduction not only in the separating wall but also in the outer shells. Heat losses to the vicinity are neglected. Since axial wall heat conduction has a similar effect as axial fluid dispersion, the dispersion model [3] is used in the approximation method. First counterflow and parallel flow recuperators are considered.

2 System of governing differential equations 

The steady state heat transfer process in a counterflow or parallel flow heat exchanger with adiabatic outside surface and axial wall heat conduction can be described with the following system of ordinary differential equations:



		(1)



		(2)



		(3)



		(4)



		(5)

The number of transfer units Ni of fluids i = 1,2





		(6)

are formed with the individual heat transfer coefficients alone, where i Ai describes the heat exchange of fluid i with the separating wall and ai Aai the exchange with the inside surface of the outer wall or shell.

The wall Peclet numbers Pew are defined for the separating wall and the outer wall as

	.	(7)

For counterflow and parallel flow L1 = L2 = L and w1 Aqw1 = w2 Aqw2 = w Aqw. In eq (2) the positive sign is for counterflow and the negative sign for parallel flow.

The boundary conditions and further conditions in brackets are:



Counterflow



		(8)

Parallel flow



		(9)

Counterflow and parallel flow



		(10)

The system of five ordinary differential equations of first and second order together with the required eight boundary conditions are implemented into the numeric computing environment of the mathematical software Maple for counterflow and parallel flow, respectively. The resulting real-valued two-point (x = 0 and x = 1) boundary value problems are solved by a finite difference method based on the trapezoidal scheme with Richardson extrapolation enhancing the accuracy [6]. The numerical solutions and analytical solutions of Kroeger [4] for special cases are used for the test of the approximation method developed in this paper.

3 Infinite thermal conductivities of the walls

First the most disadvantageous case of infinite thermal conductivities of the walls is considered. The wall Peclet numbers become zero and the system of differential equations, eqs (1) – (4), reduces to eqs (1) and (2). The wall temperatures tw, twa1 and twa2 take constant values. The following equation has been derived for the calculation of P1 = P1,0 with index 0 for zero wall Peclet numbers.



		(11)





This equation is valid for counterflow, parallel flow and any flow arrangement. The indices 1 and 2 can be exchanged. In the limiting case , R1 = N2 = Na2 = 0 the right hand side term in eq (11) turns to R1/N2 = . For Na1 = Na2 = , eq (11) applies to the two-sided stirred tank [1, 2].



4 Weak wall heat conduction effects

The limiting case of very low thermal wall conductivities (w0, wa10, wa20) is considered in which fluid and wall temperatures do not change remarkably. The wall temperatures of the outside walls assume the temperature of the adjacent fluid i = 1,2, Twa,i = Ti, as the outside surface is adiabatic. So the local axial conductive heat flows in the outer walls a,i = a,1 and a,2 are



	.	(12)

With the local temperature of the separating wall



		(13)

the local conductive heat flow in this wall can be expressed as



		(14)

The substitutive effective axial dispersive heat flows in fluids i = 1,2 are



	.	(15)

The basic idea of this model is to shift the conductive axial heat flows from the walls into the adjacent fluids. This yields effective Peclet numbers for the dispersion model. Since the separating wall is in contact with both fluids, its heat flow has to be distributed according to the (unknown) fractions 1 for fluid 1 and 2 = 1 – 1 for fluid 2. The substitutive dispersive heat flows are accordingly expressed as



	,	(16)



	.	(17)

The eqs (16) and (17) represent the basic concept of the model for weak conductive effects. Substituting eqs (12), (14) and (15) into eqs (16) and (17) and rearranging yields



		(18)



		(19)

The positive sign is for counterflow and the negative sign for parallel flow. The negative sign occurs as for parallel flow dT2/dT1  0. The Peclet numbers Pe1 and Pe2 could be used if the fractions 1 and 2 were known. They are determined in the following.

The overall conductive effect can be expressed with the dimensionless dispersive mean temperature difference [3]



	.	(20)

This equation defines also Pe = Pe1,2 which is equal for both the fluids. The deteriorative conduction effect should yield positive values Pe = Pe1,2 > 0 for all cases of counterflow and parallel flow.

Multiplying eqs (18) and (19) by P1 and P2, respectively, summation of both equations and dividing by P1 yields with P2/P1 = R1



		(21)

This equation reveals that the condition Pe > 0 can only be fulfilled throughout if



	.	(22)

Substituting eq (22) into eq (21) finally yields



		(23)

The eq (23) remains valid if the indices 1 and 2 are exchanged. The positive sign is for counterflow and the negative sign is for parallel flow. The dispersive Peclet number Pe has to be applied to both fluids.

Substituting eq (22) into eqs (18) and (19) yields formulas for Pe1 and Pe2 which have to be applied to fluid 1 and fluid 2, respectively.

With counterflow Pe1 > 0 and Pe2 > 0, which means that, owing to wall heat conduction, for fixed inlet and outlet temperatures the mean temperature difference m = T1m – T2m decreases, the mean temperature T1m decreases and T2m increases.

With parallel flow one of the Peclet numbers may be negative. If e.g. Pewa,1 = Pewa,2 =  (no outer wall effect) and N1 > N2, then Pe1 > 0 and Pe2 < 0. This means that in this case m = T1m – T2m decreases, T1m decreases and T2m decreases as well, but less than T1m. This is in qualitative accordance with the real process.

The application of Pe1 and Pe2 from eqs (18), (19) and (22) gives the same results as Pe from eq (23). The two Peclet numbers Pe1 and Pe2 yield more insight in the process, applying only one Peclet number Pe according to eq (23) is more appropriate for the approximation method developed in the following.

5 Approximation equation for Pe

The relative error of Pe from eq (23) decreases with increasing values of the wall Peclet numbers and the resulting Pe for both fluids. For lower values of Pe eq (23) provides too low values of Pe. In the limiting case Pew = Pewa,1 = Pewa,2 = 0 eq (23) gives the wrong result Pe = 0. This case has been investigated in section 3 and the correct value of Pe = Pe0 can be calculated from eq (20). Substituting in eq (20) d according to the well known relationship for any flow arrangement with or without dispersion



		(24)

yields the formula for the calculation of Pe = Pe0:



		(25)

In eq (25) Pe1,0 is determined from eq (11) and lg is the dimensionless logarithmic mean temperature difference for counterflow or parallel flow, respectively, calculated with P1,0 and R1.

The eqs (20) and (25) are also exactly valid for the pure cross-flow and are approximations for other one-pass flow arrangements, if lg is replaced by the correct mean temperature difference for the flow arrangement under consideration.

With the limiting Peclet number Pe0 from eq (25) and the Peclet number from eq (23) which is now denoted with Pe the approximation equation is formed



		(26)

which yields exact values of Pe for Pe =  and for Pe = 0.

The comparison of eq (26) with analytical and numerical results from eqs (1) – (10) provides a value of m = 0.87. In the range 5  Pe  23 for counterflow and 9  Pe  140 for parallel flow the mean relative error of Pe is about 5 % and the mean relative error of P1 or P2, calculated with Pe, is about 0.5 %.

The temperature change P1 can be calculated by correcting the overall heat transfer coefficient (kA) according to



		(27)

and applying the corrected value (kA) to the known formulas for counterflow and parallel flow. Other ways are possible as shown in [3].

6 Application of the model to mixed-mixed cross-flow

The eqs (11) and (24) – (26) can directly be applied to mixed-mixed cross-flow. Only the eq (23) has to be replaced by a new equation and in eq (25) lg has to be replaced by the mean temperature difference for mixed-mixed cross-flow.

Now in the separating wall axial heat conduction takes place in the two flow directions and both the flow lengths Li may be different. So in the wall Peclet numbers usually L1  L2 and w1 Aqw1  w2 Aqw2 (see eq (7)).

Applying again the principle of shifting the conductive heat flows into the fluids leads to the following equation of Pe = Pe:



		(28)



		(29)



		(30)

Using eq (28) and (29) the eq (23) for counterflow (+) and parallel flow (-) can be rearranged to a similar form:



		(31)

In the limiting cases of one constant fluid temperature, 1 =  or 2 = , the eqs (30) and (31) become identical. Since both equations have been derived according to the same model they should reach approximately the same accuracy, also in the general case 1 <  and 2 < .

Using the Peclet numbers Pe(30) from eq (30) and Pe(31,) from eq (31) enables the general presentation:



		(32)

with

		a = 0

		:

		Parallel flow



		a = 1/2

		:

		Mixed-mixed cross-flow



		a = 1

		:

		Counterflow.





Other one-pass symmetrical flow arrangements may be described with individual values of 0  a  1.

7 Application of the model to regenerators under steady periodic operation

The method derived for counterflow and parallel flow recuperators can also be adapted and applied to fixed-bed and rotary regenerators. The outer walls are considered as part of the solid matrix and need not be considered separately.

7.1 Infinite axial thermal conductivity of the solid matrix

This limiting case corresponds to the steady state heat transfer process in two mixed-unmixed cross-flow heat exchangers coupled by a circulating transversely mixed flow stream [7, 8]. The temperature change P1



	(33)

with the fluid to solid matrix capacity ratios:



For the fixed-bed regenerator



		(34)

and the rotary regenerator



		(35)

The capacity Cs,i in eq (34) is the capacity of one matrix “i” and Cs,t in eq (35) is the total capacity of the rotating matrix. The time i is the duration of period “i” and the sum (1 + 2) in eq (35) is the duration of one revolution of the matrix.

The numbers of transfer units N1 and N2 in eq (33) are formed with the corrected heat transfer coefficients i,o according to



	.	(36)

They take the lateral heat conduction resistance inside the solid matrix into account. The estimation of the additional resistance 1/s =  /s is subject to Hausen’s theory of regenerators [9, 1, 2] and will be discussed later in this paper.

Once the temperature change P1 is determined from eq (33), the Peclet number for s =  can be calculated. For regenerators the previous eq (25) has to be replaced by



		(37)





For rotary regenerators:



		(38)

For fixed-bed regenerators:



		(39)

The correction factor k/k0, which is in reality a correction of the mean temperature difference, takes the deviations of the time averaged longitudinal temperature profiles in the regenerator from those in the equivalent counterflow recuperator into account. This correction has been and still is discussed and calculated by many researchers [9, 10]. It is calculated for a solid matrix with infinite lateral and zero axial thermal conductivity. Results are given in the relevant literature [9, 10].

7.2 Low axial thermal conductivity of the solid matrix

The previous eqs (23) or (31), (28) and (29) can directly be applied using the following definitions of the wall Peclet numbers.



Fixed-bed regenerator:



		(40)

Rotary regenerator:



		(41)

The cross-section for heat conduction Aqs,i in eq (40) belongs to the one solid matrix „i” under consideration. The cross-section Aqs,t in eq (41) is the total axial cross-section of the rotating solid matrix.

The products iAi in eqs (23), (28) and (29) have to be substituted according to



Fixed-bed regenerator:



		(42)

Rotary regenerator:



		(43)



7.3 Final correction for axial solid matrix conduction

With Pe0 from eq (37), considering eqs (33) – (39), and with Pe from eqs (23) and eqs (40) – (43) the final Peclet number can be calculated using eq (26). Then eq (27) is applied to the correction of the overall heat transfer coefficient (kA).



For the rotary regenerator



		(44)

and eq (27) yields the corrected value (kA). In eq (44) A1 and A2 are the actual heat transfer surfaces in the hot and cold section.

For the fixed-bed regenerator eq (27) has to be adapted to the definitions in Hausen’s theory [9, 1, 2] leading to



	(45)

The surface A in eq (45) is the heat transfer surface of one solid matrix.

If inlet and mean outlet temperatures are given, eq (20) can be used for the correction of the mean temperature difference instead of eq (27) [3].

7.4 Consideration of lateral conductive resistance in solid matrix

7.4.1 Equivalent wall thickness

The function  in eq (36) can be calculated according to Hausen [9, 1, 2] for the plane wall of thickness , for the cylinder of diameter  and the sphere of diameter . For other geometries Hausen introduced the equivalent wall thickness



		(46)

to be used in the equations for the plane wall.

A new formula for the equivalent wall thickness is proposed which gives better agreement with exact calculations for spherical elements than eq (46)



	.	(47)

For the cylinder eqs (46) and (47) yield the same results.



7.4.2 Alternative calculation model







In the theory on thermal regenerators [9, 10] the transient process is calculated under the assumption of zero axial and infinite lateral thermal conductivity or zero wall thickness, . If  the additional resistance  from eq (36) is added.











According to previous investigations on temperature oscillation heat transfer processes [11], not only the heat transfer coefficient has to be corrected (eq (36)) but also the wall thickness or the capacity of the elements. (Index s in this paper is index w in ref [11].) If  the reduced effective capacity  should be used for the determination of Hausen’s reduced period  [9, 10]. The reduction  and the related heat transfer resistance  can be calculated according to the temperature oscillation model [11]. The relevant equations are given in the appendix. The resulting values of  are equal to or a few percent lower than those of Hausen’s approach. The required capacity reduction yields another minor or negligible correction on the safe side. The limiting case of infinite storage capacity does no longer occur.

8 Conclusions

1. The effect of axial heat conduction in the walls of recuperators and in the solid matrix of regenerators can be described and estimated with the axial dispersion model and an effective dispersive Peclet number.

2. The derived approximation model can be applied to counterflow, parallel flow and mixed-mixed cross-flow recuperators as well as counterflow and parallel flow regenerators.

3. The effect of lateral heat conduction in the solid matrix of regenerators can be described with a temperature oscillation model, developed earlier for the evaluation of temperature oscillation experiments [11]. A new formula for Hausen’s equivalent wall thickness [1, 2, 9] can improve and simplify the calculation methods for regenerators.
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Appendix

1 Calculation of s in eq (36) according to the oscillation model [11]

Equivalent wall thickness



		(A1)

Substitution into eq (47)



		(A2)

Dimensionless equivalent wall thickness



		(A3)

Equivalent Nußelt number



		(A4)



		(A5)









Application of eqs (A2), (A3), (A5) and (A4) yields  as function of  and . For the cylinder . For the sphere .









2 Calculation of the reduced effective capacity  according to ref [11]

Effective capacity ratio



		(A6)

For the plane wall



		(A7)

Instead of eq (A2) the following eq (A8) is recommended for the application to eq (A7)



		(A8)





For precise calculations of cylinder and sphere                  ( and ) use the equations (A3) and (A4) in the appendix of ref [11].

Nomenclature

A	– area, m2,

a	– variable, eq (32),

C	– heat capacity, J/K,



	– overall heat transfer coefficient, W/(m2K),

L, l	– flow length, m,

m	– exponent, eq (26)



N	– number of transfer units, formed with heat transfer 	   coefficient, ,



Nu	– Nußelt number, , eq (A4),



NTU	– number of transfer units, ,

P1	– dimensionless temperature change



	   of flow stream 1, ,

P2	– dimensionless temperature change



	   of flow stream 2, ,

Pe	– Peclet number for fluid dispersion,



	   ,



Pew	– wall Peclet number, ,



	– heat flow stream, W,



R	– capacity ratio, ,



	   for fixed bed regenerators ,



	– temperature, K,

V	– volume, m3,



	– heat capacity rate, W/K,

X	– dimensionless wall thickness, eq (A3),

x	– dimensionless flow length, x = l/L



Greek symbols

	– heat transfer coefficient, W/(m2K),

	– wall thickness or diameter, m,



	– dimensionless mean temperature difference,



	   ,



	– thermal conductivity, W/(mK),

	– reduced period of regenerator,

	– duration or period, s,

	– function, eq (36),

	– fraction, eqs (16) and (17),

	– dummy variable, eqs (28) and (29)



Subscripts and superscripts

a	– outside,

cyl	– cylinder,

d	– dispersive,

eq	– equivalent,



	– counter,

lg	– logarithmic,

m	– mean value,

q	– cross-section,

s	– solid matrix,

sph	– sphere,

t	– total,

w	– wall,

	– corrected for heat conduction,

0	– corrected for conductive resistance, or zero wall

	   Peclet number,

	– infinite wall Peclet number,

1, 2	– fluid 1, 2,

~	– effective reduced value
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