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Abstract. In the electricity market, the real-time balance of electricity generation and consumption is a 

main task. In view of this, power providers usually sign contracts with their critical consumers (i.e., usually 

large-scale industrial companies) for managing their capacity demands. On the other hand, aggregators 

group commercial and residential consumers, and integrate their demands to negotiate with power providers. 

With a proper grouping of numerous electricity consumers, aggregators help to ensure stable electric supply, 

and reduce the burden of managing many consumers. In this work, we thus propose a novel data clustering 

approach to group complementary consumers based on their usage patterns (i.e., daily electricity 

consumption curves.) Furthermore, we incorporate the technique of discrete wavelet transform to speed up 

the clustering process. Specifically, approximations reconstructed from only a few wavelet coefficients may 

precisely capture the shape of original usage patterns. Experimental results based on a real dataset show that 

our approach is promising in practical applications. 

1 Introduction  

Resulting from the recent widespread deployment of 

advanced metering infrastructure, concrete information 

of user consumption is more available from smart meters, 

which is responsible for recording the electricity so that 

user can manage their energy usage and communicate 

with the supply-side. This facilitates the development 

and revolution of the electricity market. For example, a 

role of utility companies is introduced in a modern 

electricity market. In other words, such an electricity 

market may be composed of one generation company, 

multiple utility companies, and thousands of consumers. 

The utility company plays the role of an intermediary 

agent between the generation company and consumers. 

The utility company purchases the electric power from 

the generation company at a wholesale price and then 

sells it to the consumers at a retail price to maximize its 

profits. In addition, the utility company plays the role of 

aggregator so as to group numerous small-scale (i.e., 

commercial and residential) consumers. 

Note that different electricity consumers may have 

quite different usage patterns. For example, the usage 

pattern of a commercial consumer is usually determined 

by its opening hours. Also, the usage pattern of a 

residential consumer is closely related to the living style 

of its family members. When attempting to group 

appropriate consumers together, it is important to have 

their usage patterns complementary. Consequently, to 

utilize data clustering techniques, conventional similarity 

measures cannot be directly applied. We thus propose a 

new measure to quantify the degree of complementary 

between two consumers. It is also noted the time 

required for performing the clustering process grows 

dramatically with the number of consumers. In view of 

this, we propose to incorporate the technique of discrete 

wavelet transform to efficiently handle the usage pattern 

of every electricity consumer. 

The rest of this paper is organized as follows. 

Preliminaries of recent electricity market are provided in 

Sec.2. Details of our approach are presented in Sec.3. 

Experimental results and corresponding discussion are 

illustrated in Sec.4. Finally, Sec.5 concludes this paper. 

2 Preliminaries  

2.1. Billing of electricity usage 

Electricity, unlike other forms of energy (e.g., coal, gas, 

and oil,) may not be economically stored and must be 

generated on demand. In practical environments, critical 

electricity consumers (e.g., large industrial companies) 

have to consume their electricity according to the 

contract that they have signed with power providers. 

This means the electricity usage (usually measured in 

terms of kWh per 15 minutes) cannot exceed the 

capacity on the contract.  

Note that if the peak demand does not exceed the 

contract capacity, a fixed capacity charge is levied, and 

if the peak demand exceeds the contract capacity, a 

penalty charge is levied. Therefore, signing an extremely 

low capacity on the contract can impose high capacity 

charges, while signing an extremely high capacity on the 

contract may result in an unnecessary basic capacity 

charge. Hence, to decide a proper contract capacity have 
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received significant attention from critical electricity 

consumers [1]. Furthermore, problems occur when 

consumers demand more than promises. Although power 

providers earn more money from the punishment, they 

should increase the amount of power supply emergently 

to meet the demand, which can cause a series of chaos 

for both users and providers. Also, while power 

providers oversupply electricity, they have to afford the 

cost by themselves. These problems are summarized in 

Fig. 1. 

Power Providers

Power Consumers
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Contract Capacity
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Power Rationing Surplus Energy
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Fig. 1. Downsides of having an improper contract capacity. 

2.2. Analysis of electricity consumption data 

In the electricity market, the electricity real-time balance 

is a main task of the power system [2]. Traditionally, for 

large samples of households, only total household usage 

was available to a monthly time resolution, via utility 

bills. Studies of smaller samples of houses have been 

undertaken, primarily for electrical energy use, that 

provide data at a better temporal resolution (e.g., every 

15 minutes), and, in some cases, by individual end use 

(e.g., air-conditioning unit, clothes dryer, stove). 

However, this kind of data collection comes at a high 

incremental cost for sub-metering equipment, which 

limited the number of houses studied and the time over 

which data was gathered [3]. 

In recent years, resulting from the widespread 

deployment of advanced metering infrastructure, 

concrete information of user consumption is more 

available from smart meters, which is responsible for 

recording the electricity so that user can manage their 

energy usage and communicate with the supply-side [4-

5]. For instance, customers’ energy use lifestyle can be 

understood by smart meter data [6], and customers can 

see their electricity use on a real-time basis. As a result, 

by supervising their electricity using behavior, they can 

reduce surplus energy consumption.  

Load shapes derived from a smart meter reveal the 

magnitude and timing of electricity consumption. As 

shown in Fig. 2, not only energy providers but also 

consumers may be rewarded from data analytics of smart 

meter data. 

 

Fig. 2. Relationship between a smart meter and electricity. 

consumers [8]. 

Power providers can assess the impact of energy 

conservation and governmental policies on electricity 

usage, measure the impact of unusual weather (e.g., a 

heat wave,) and qualify the impact of projected climate 

change on electricity use and energy supplies [7]. 
Consequently, power providers may estimate the 

amount of energy they have to supply more precisely, 

that greatly reduces the probability of producing 

inadequate electricity for their consumers. Furthermore, 

the unnecessary cost of producing surplus power is saved. 

Energy providers can thus guarantee the quality and 

stability of electricity supplying. For instance, it has been 

shown that energy providers can identify usage patterns 

by electricity consumption data to predict future 

electricity consumption [7]. Moreover, after modeling 

the electricity usage, significant differences in 

consuming electricity between clusters of consumers can 

be identified.  

Customers are allowed to make informed decisions 

regarding their energy consumption because of demand 

side management (DSM), which refers to the different 

initiatives intended to modify the time pattern and 

magnitude of the demand, or introducing advanced 

mechanisms for encouraging the demand-side to 

participate actively in the network optimization process 

[9]. Note that DSM plays a significant role in electricity 

markets [10], and it is a promising method to transform 

traditional power grid into a more reliably and 

economically operated smart grid [11-14]. 

2.3. Aggregators 

For the stable operation of the power system, it is crucial 

to maintain the electricity real-time balance [2]. The role 

of utility companies, also known as aggregators, is 

introduced in a modern electricity market. As shown in 

Fig. 3, a bi-level electricity market may be composed of 

one generation company, multiple aggregators, and 

thousands of consumers. The aggregator plays the role of 

an intermediary agent between the generation company 

and consumers. The aggregator purchases the electric 

power from the generation company at a wholesale price 

and then sells it to the consumers at a retail price to 

maximize its profits. 

 

Fig. 3. A bi-level electricity market [2]. 
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Aggregators cluster the consumers, sign contracts 

with them, and integrate their demands, which can 

ensure stable electric supply, and reduce the burden of 

managing many users. Moreover, the number of 

potential consumers participating in the demand 

response program, and the corresponding execution 

effectiveness both increase. To be specific, the 

consumers may respond to the price that improves the 

regulation capacities for their aggregator. 

In summary, aggregators receive the wholesale price 

announced by the generation company and then set the 

optimal retail prices and regulation prices to maximize 

their profits. The consumers accept the optimal retail 

price sent by the utility company through the smart 

meters and then determine the optimal energy 

consumption. At the same time, the consumers provide 

regulation services to match supply with demand [2]. 

For example, there are some states in the USA 

adopting a community electricity aggregation program. 

With more than 200 such programs (or more than one 

million households,) the resulting benefits include 

reducing greenhouse gas, providing opportunities for 

new revenue, assisting with utility reform and creating 

job opportunities. In Germany, aggregators coordinate 

with transmission system operators, distribution system 

operators, balance responsible parties, energy retailers, 

and power consumers, so as to balance the amount of 

power between demand and supply. In the UK, 

aggregators cluster the power consumers, and sign 

contract with both power consumers and power suppliers. 

After that, they send the electricity data to the power 

suppliers, and if needed, they help the power suppliers to 

distribute the electricity. 

3 Proposed scheme of complementary 
clustering 

3.1. Data clustering 

Data clustering is an unsupervised learning technique. In 

general, it targets on dividing data objects into different 

clusters such that the objects in the same cluster are more 

similar to one another than to those from different 

clusters. The similarity of two data objects is usually 

assessed according to a distance measure. Among 

several alternatives, hierarchical clustering algorithms 

provide a very simple and appealing way of displaying 

the organizational structure of the data as a dendrogram. 

Note that there exist many hierarchical clustering 

algorithms, and they may differ in aspects such as the 

adopted distance measure and whether the hierarchy (or 

dendrogram) is constructed in a top-down or a bottom-up 

manner.  

Nevertheless, for our purpose of selecting appropriate 

consumers into the same cluster, the complementarity 

(rather than the similarity) of data objects is addressed. If 

two similar consumers are clustered together, their 

aggregated usage pattern becomes steeper. This means 

an additional cost of signing a higher contracted capacity 

to allow the usage of on-peak hours and a potential waste 

in off-peak hours. Thus, complementary consumers 

rather than similar ones are desired to be clustered.  
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(b) Usage pattern of consumer B 
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(c) Usage pattern of consumer C 

Fig. 4. An example of different usage patterns. 

For example, usage patterns of three different 

consumers (i.e., A, B, and, C) are shown in Fig. 4. When 

selecting two consumers to form a cluster, we can easily 

observe that the composite usage pattern in Fig. 5(b) is 

steeper than that in Fig. 5(a). In other words, it is more 

appropriate to group consumers A and B because their 

usage patterns are more complementary. 
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(a) Composite usage pattern of consumers A and B 
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(b) Composite usage pattern of consumers A and C 

Fig. 5. Aggregation of different usage patterns. 
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In view of this, we need to propose a new measure to 

facilitate following clustering procedures because 

conventional distance measures cannot be directly 

utilized. Once the usage patterns of selected consumers 

are complementary enough, we expect the overall usage 

pattern of a cluster is smoother than that of individual 

consumer in this cluster. 

3.2. Discrete wavelet transform 

To reduce the computation complexity and thus the 

required execution time, the discrete wavelet transform 

is employed for processing time series. This technique is 

advantageous for its linear computational complexity. 

While the theory of wavelet is extensive, we conform 

ourselves to the preliminary wavelet transform in this 

paper. Namely, the Haar wavelet basis function (1) 

which is the simplest wavelet is explored and utilized for 

our approach. 
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Note that H(t) is the Haar wavelet's mother wavelet 

function. 

Before and after the decomposition (as shown in Fig. 

6,) it is observed that although the number of coefficients 

remains the same, decomposed coefficients tend to be 

distributed unevenly. Especially, it is reasonable to 

expect many decomposed coefficients to be very small in 

magnitude. With the purpose of obtaining a good 

approximation for the time series data using limited 

storage space, these small coefficients may be truncated 

with the effect of introducing only small errors in the 

reconstructed signal. 

= +

+ + + +…

 

Fig. 6. Time series decomposition using the Haar wavelet. 

Approximated(32) Approximated(16) Approximated(8)

 

Fig. 7. Lossy reconstruction using different numbers of wavelet 

coefficients. 

In general, there exists a tradeoff between the quality 

of reconstructed time series and the storage space for 

retained coefficients. Also, for the purpose of 

approximation, the reconstructed quality is in proportion 

to the number of significant coefficients stored. As 

shown in Fig. 7, an example of reconstruction using 

different numbers of wavelet coefficients is provided. 

3.3. Progress value 

In this paper, we define two indicators to facilitate the 

required data clustering process. Firstly, distance to the 

maximum value (DMV) is the sum of the differences 

between the maximum value of a load curve and the rest 

of the values. Therefore, the DMV is actually the size of 

the shaded area below the horizontal line and above the 

load curve in Fig. 8. Secondly, the progress value (PV) is 

the sum of the DMVs of the two consumers before being 

grouped, minus the DMV of the grouped consumer. 

Note that as the DMV of the clustered consumer 

becomes smaller, which means the two consumers to be 

clustered are more complementary, the clustered load 

curve becomes flatter, and the PV value becomes larger, 

as shown in Fig. 4 and Fig. 5. In other words, if we can 

get a large value of PV, the most suitable couple of 

consumers to be clustered can be acquired. 

 

Fig. 8. DMV of an example load curve. 

Integrating the methods above, first, by adopting the 

discrete wavelet transform, we simplify the original 

usage data into a series of coefficients, which not only 

decrease the execution time but similarly approximate 

the result from the original value. Then, we calculate the 

DMV of each consumer, and figure out the PVs of every 

pairs of consumers, which is the important standard and 

element while clustering consumers. At last, 

agglomerative, which is a "bottom up" approach, each 

observation starts in its own cluster, and pairs of clusters 

are merged as one moves up the hierarchy. Note that in 

each step of our approach, the pair with the highest PV 

value are merged. 

4 Empirical studies  

To implement the two approaches for comparison 

purposes, we develop corresponding programs using 

Python language. Our programs are run on a PC with 

Intel i7-7700HQ, 2.8GHz CPU and 8GBytes RAM. 

Our testing dataset contains 1-year period usage data 

from 695 electricity consumers gathered by Bureau of 

Energy, Ministry of Economic Affairs, Taiwan. We 

adopt the data from June to September of that year, 

which is the summer time, to undergo complementary 

clustering. 
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In our approach, the goal of each itertation is to 

greedily find a pair of consumers having the highest PV 

value (and thus the lowest DMV value.) Note that the 

composite usage pattern of such a pair is flatter because 

the usage patterns of the two consumers are more 

compensate. Consequently, power consumers can utilize 

their contract capacity more effectively while they have 

a higher PV value. On the basis of above, we adopt the 

saving of contract capacity to measure the quality of our 

experiment, which can tell the amount of benefit that the 

aggregators get. 

As shown in Fig. 4 and Fig. 5, when considering the 

two consumers A and B, their original contract capacity 

is around 0.035 and 0.024 kWh per 15 minutes, 

respectively. After grouping them together, the resulting 

contract capacity is around 0.038 kWh per 15 minutes, 

indicating a saving of 0.021 kWh per 15 minutes. 

In our experiments, the original approach, the 

random approach, and the proposed approach are 

implemented for comparison purposes. Note that the 

hierarchical clustering technique is identically utilized 

for all these approaches. The only difference among 

these approaches is how we process the time series of all 

consumers. In the original approach, we simply feed 

original time series of all consumers into the clustering 

algorithm. In the random approach, consumers are 

randomly selected to form clusters, i.e., the time series of 

a consumer is not considered. In the proposed approach, 

we conduct the discrete wavelet transform on all the time 

series, and retain only a few wavelet coefficients to 

represent original time series for the clustering algorithm. 

The performance of saving the overall contract 

capacity is shown in Fig. 9. Though merging the 

consumers according to PV value can be effective, while 

the peak value of two consumers are matched, it is 

unavoidable encountering the situation of PV value 

equals to 0. Wavelet(k) means that we retain only k 

wavelet coefficients to approximate the original time 

series. Note that using more wavelet coefficient saves 

more contract capacity than the random approach. In 

other words, aggregators have a measurement to select 

consumers to join them can get more benefits rather than 

generously accept an arbitrary consumer to be one part 

of them. 
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Fig. 9. Comparison of Clustered Size based on Saving of the 

Contract Capacity. 

It is found that the results of the experiment using 

wavelet(16) are close with the results of original 

approach. Though there are similar results, our approach 

simplifies the process with wavelet transform, so that the 

execution time of the original approach is much longer 

than that of our approach. The execution time of utilizing 

the original and the proposed approach is shown in Fig. 

10. With the data size of 500 consumers, it takes 

approximately 20,000 seconds for the original approach 

while the execution time of our approach is less than 

5,000 seconds. Generally speaking, the original approach 

is with the best quality but requires a lot of time. When 

facing a large number of electricity consumers, the 

original approach may not be a good option. 
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Fig. 10. Comparison of execution time. 

5 Conclusions  

In this work, we have focused on the problem of 

grouping appropriate electricity consumers based on 

their usage patterns. Note that complementary rather 

than similarity of two consumers are addressed. 

Consequently, we have revised the distance measure for 

our purposes of finding two complementary electricity 

consumers. Moreover, we have incorporated the 

technique of discrete wavelet transform for better 

efficiency in terms of the execution time when 

conducting the clustering technique. Experimental 

results have shown that our approach is promising in 

practice. 
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