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Abstract. Life Cycle Impact Assessment (LCIA) can be used as a method 
to assess environmental impact of pathogen contamination in several 
stages. This paper attempts to determine the characterization factor (CF) 
for microbial contamination from livestock emission in surface water on a 
global scale. CF was defined as the change in Disability Adjusted Life 
Years (dDALY in yr) due to a marginal change in emission of a pathogen 
(dOocyst/day). This CF consists of intake fraction, effect factor and 
damage factor. The average intake fraction per river basin specific is 0.003, 
meaning that 0.3% of the emitted oocysts is emitted by the human 
population via drinking water and swimming. The effect factor value has a 
range from 0.0022-0736 case/oocyst, with the average 0.29 case/oocyst. 
The final characterization factor has a range between 0 to 1.2 x 10-5 
DALY/oocyst in a river basin scale. In this study, CFs was determined for 
pathogen contamination for the first time. It was shown how these can be 
derived for Cryptosporidium and other pathogen with similar cause-impact 
pathways. 

1 Introduction  
Life Cycle Assessment (LCA) is a method to assess environmental impact from a particular 
product, services or sources which conducted in several stages [1]. The Life Cycle Impact 
Assessment (LCIA) is the third stage of the LCA after goal and scope definition and 
inventory analysis. In impact assessment, the resource use and emissions gathered in the 
inventory step are translated into potential environmental impacts [2]. While the 
frameworks for some categories are already established in LCA (e.g climate change, global 
warming, acidification), the frameworks for some impact categories are still to be included.  

Exposures related to drinking, non-potable water, and wastewater systems can lead to 
contact with various pathogens. Both enteric and environmental pathogens may result in 
health outcomes when ingested or inhaled, ranging from risk of infection and mortality [3]. 
Cryptosporidium is one of the most common pathogen found in surface water [4]. The 
oocysts of Cryptosporidium can survive for several months in surface water before being 
ingested by humans [5]. The oocysts of Cryptosporidium can infect both animals and 
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humans even in a low dose condition [6]. Moreover, outbreaks of cryptosporidiosis have 
been reported worldwide [7].  

Increasing waterborne disease related to climate change [8] and induced by human 
activities, such as massive livestock production and rapid agricultural production. 
Consequently, the effect of pathogens on human health damage has become more 
important. While the health damage related to pathogen infections can be quantified in 
disability-adjusted life years (DALYs) as commonly being done in risk assessment, it is 
often neglected in life cycle assessment methods. Although previous research has included 
the effects of pathogen in LCA [1], the existing research has not yet investigated the full 
cause-effect pathway to systematically include impact assessment factors in LCA. 
Therefore, an impact assessment framework for microbial contamination is inevitably 
needed. 

2 Methods 

 

 

 

 

 

 

 

 

 

 

 

The CFs is defined as the change in Disability Adjusted Life Years of all population 
(dDALY in yr) due to a linear change in emission of pathogen (dOocyst/day) and was 
derived per river basin. 

 
CF = IF ∙ EF ∙ DF (1) 

Where: 
The intake fraction (IF) is the change of oocysts number in per number of oocysts 
released [-]. 

Fig. 1. Cause-impact pathway of Cryptosporidium infection (blue boxes are negligible in this study). 
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The effect factor (EF) is the linear change of risk due to the intake of oocysts 
(case/oocyst).  
The damage factor [DALY/risk or DALY/probability of infection]  

2.1 Intake fraction 

The exposure of waterborne pathogen occurs through ingestion, inhalation and dermal 
contact [5]. However, this study only includes the possible intake of Cryptosporidium 
through ingestion pathway from drinking and swimming activities as a starting point due to 
lack of data from other exposure pathways. The change of emission was described as the 
emission of oocyst load from livestock emission per day. The load value (oocyst/day) was 
derived from the output of GlowPa-Crypto L1 model by Vermeulen et al. [9]. The intake 
fraction was determined by the change of intake rate due to the change of emission, as 
provided by a formulation below: 
 

IFr = 𝐼𝐼𝐼𝐼∙∑(∆𝐶𝐶𝑖𝑖∙𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖)∆𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (2) 

Where: 

IFr = River basin r specifc intake fraction [-] 
Ci = Concentration of total oocyst per grid cell i [oocyst/m3] 
IR = Intake rate of contaminated water [m3/person/day] 
Popi = Population number per grid cell i [person] 
∆𝑀𝑀𝑟𝑟 = Change of total emission per river basin r per day [oocyst/day] 

2.2 Effect factor 

In this study, the effect factor of Cryptosporidium was determined as the linear change in 
risk (probability of infection) due to an increase of oocyst concentration where the risk is 
0.5 probability of infection per day. This factor was determined as: 
 

𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5
𝐼𝐼50 (3) 

Where: 
LEF = Effect factor [case/oocysts] 
I50 = Dose where the infection is 50% [oocysts] 

 
A dose-response assessment determines the relation between the concentration of oocyst 

that enter the host’ body (dose), and possible infection (risk). This study used six dose-
response models for pathogen infection developed by Messner [10]. The order of models 
represents an increase of complexity, which are fractional Poisson model, an exponential 
model, exponential with immunity model, beta-Poisson model, hierarchical beta-Poisson 
model, and hierarchical logistic model. 

2.3 Damage factor 

The damage factor was determined based on the latest data from the World Health 
Organization (WHO) and the Global Burden of Disease [3]. The damage factor 
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[DALY/case] distinguishes between differences in the severity of disabilities caused by a 
disease in terms of affected life years. 
 

Table 1. Estimation of DALY value for cryptosporidiosis [11]. 

Outcomes   Severity Duration Burden of disease per 
case in DALYs 

Disease burden 
(DALY) per 
1000 cases 

Watery 
diarrhoea 

0.067 7 days 0.0013 1.34 

Death 1 13.2 yrs 13.2 0.13 
Total DALY/1000 cases 1.47 

 

3 Results and discussion 

3.1 Intake fraction 

Figure 2 shows that the intake fraction of Cryptosporidium varies between 0 and 0.03 
oocysts taken in per oocysts released. This implies that from 0 up to 3% oocysts is taken in 
by global population per number of oocyst released by livestock emission.  

 

 

 

 

 

 
Fig. 2. River basin-specific intake fractions of Cryptosporidium worldwide 

In Africa region, hotspots area can be seen in South Africa, Nigeria, Ethiopia, and 
Kenya (along Nile River and Euphrate and Tigris River). Meanwhile, in America continent, 
high intake fraction can be seen in some part of USA, Venezuela and Uruguay (along 
Mississippi River, Amazon River and Parana River).  In Europe continent, a high intake 
fraction can be seen in United Kingdom (along Thames River). These results are in 
accordance with the global pathogen model by Hofstra [12] where the hotspots of oocyst 
loads found in India, Latin America and big cities in China.  

The intake fraction was calculated only based on the livestock emission so that it might 
underestimate the result. However, human emission could contribute until 40% for 
Cryptosporidium emission to surface water [12]. In addition, the other exposure route like 
ingestion from crops was also neglected in this study. The value of intake fraction also 
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varies per region due to variability in river discharge [13] and pathogen behaviour before 
entering the surface water [14]. A higher discharge may decrease oocyst concentrations due 
to dilution [15] or increase the microorganism concentration due to resuspension from 
sediments and increased runoff [8].  

3.2 Effect factor 

Figure 3 below shows the effect factor value from six different dose-response models by 
Messner [10]. The effect factor value ranges from 0.0022 to 0736 cases/oocyst. A minimum 
value was obtained by using an exponential dose-response model (0.0022 case/oocyst); 
while a maximum value was obtained by using fraction Poisson model (0.736 case/oocyst). 
The Beta Poisson and an exponential with immunity model give slightly different effect 
factor values, as 0.534 and 0.442 case/oocyst respectively. Both hierarchical models also 
give slightly different values, with 0.026 and 0.014 case/oocyst respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Linear effect factor (LEF) was chosen in this study due to the linearity factor fit the ID50 
curve better rather than marginal effect factor or average effect factor. In addition, the 
usage of LEF also made the differences of various dose-response models more visible. 
Among these models, the fraction Poisson model is the only one-parameter model and 
assumes that all oocyst included in the study were capable to initiate an infection. Thus, the 
linear effect factor value using this model is the highest among six different dose-response 
models. In contrast, an exponential dose-response model has the lowest linear effect value 
despite has the same number of a parameter as Fraction Poisson. This is due to an 
exponential model has an assumption that there is also a probability of not becoming 
infected from a successfully ingested oocyst.  

3.3 Final characterization factor 

Figure 4 depicts DALY value per number of oocyst released in a river basin scale. The 
characterization value ranges from 0 to 1.2 x 10-5 DALY/oocyst. The magnitude of 
characterisation factor is equal to the intake fraction because the average value of effect 
factor was being used to estimate the results.  

Fig. 3. Effect factors from different dose-response models of Cryptosporidium. 
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Fig. 4.  River basin specific characterization factor of Cryptosporidium worldwide. 

Most of the CF for human health damage expressed as DALY per kg emission. In this 
study, we used oocyst unit since most of the pathogen models also use this unit to express 
pathogen concentration or pathogen load. In fact, it will be more understandable for an 
LCA practitioner to have the final characterization factor per unit of production. However, 
an LCA practitioner is not able to derive the number of oocyst from certain product. 
Nevertheless, as the first step this framework can be used to link the life cycle inventory 
and impact assessment.  

To our knowledge, this is the first study that explores the characterization framework of 
health damage due to pathogen contamination. Previous studies mostly investigate the 
health damage impact due to the chemical substance (GHG emission, human toxicity) or 
physical substance (i.e. particulate matter). Our CF results have the same unit for human 
health damage (DALY) and can therefore directly be included in LCA case studies. 

 

4 Conclusion 
A clear impact assessment framework which showed how characterization factor of 
microbial contamination can be derived had been developed through this study. A cause 
impact pathway has already been made for both livestock and human emission. Since this 
study only covers the livestock emission, a prospect research ahead could be including 
human emission into the characterization factor development. In addition, some of the 
required data is neither available per grid cell or per river basin specific, for instance, 
exposure pathway per age category. The DALY data for Cryptosporidiosis is not available 
per country or region. When those data are available the final characterization factor can be 
developed more specific per grid or country level.  A health target or a preferred 
environmental state condition also can be set for certain pathogen for further develop other 
effect factors besides the linear effect model. Furthermore, the framework also can be 
assigned to different kind of pathogen that causes major waterborne disease, for instance, 
Campylobacter, Giardia or Rotavirus. Lastly, for an LCA practitioner, the development of 
characterization factor per unit production, for example as DALY/kg of milk or DALY/kg 
of meat production will be inevitably useful. 
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