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Abstract. The study is devoted to the remote sensing data processing using the
models with random input data. In this article we propose a new approach to
calculation of functions with random arguments, which is a technique of fast
computations, based on the idea of parallel computations and the application of
numerical probability analysis. To calculate a function with random arguments
we apply one of the basic concepts of numerical probabilistic analysis as the
probabilistic extension. To implement the technique of fast computations, a
new method based on parallel recursive calculations is proposed.

1 Introduction

Remote sensing data analysis often includes numerical study of models with random input
data. Such models are traditionally studied by Monte Carlo methods. Monte Carlo method is
a powerful approach, but it has some serious shortcomings. First of all, this is an extremely
low rate of convergence. Non-Monte Carlo methods have been developed since the 1960s. A
major non-Monte Carlo approach is interval analysis. However, interval analysis is computed
only on the boundaries of random processes without examining their internal distributions. In
our work, we develop a technique that uses Numerical Probabilistic Analysis (NPA) to solve
various problems with stochastic data uncertainty.

The basis of numerical probabilistic analysis is numerical operations on probability den-
sity functions of the random values. These are operations “+”, “−”, “·”, “/”, “↑”, “max”,
“min”, as well as binary relations “≤”, “≥” and some others. The numerical operations of the
piecewise polynomial function arithmetic constitute the major component of NPA.

Using the arithmetic of probability density functions and probabilistic extensions, we can
construct numerical methods that enable us solving systems of linear and nonlinear algebraic
equations with random parameter [6].

In our approach we use the piecewise polynomial models to represent probability density
functions:

• piecewise constant functions (histograms);

• piecewise linear functions (frequency polygons);

• piecewise polynomial functions (splines).
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In many cases problems of distance sensing can be reduced to the numerical analysis of
functions

z = f (x1, x2, . . . , xn).

When the probability density of x1, x2, . . . , xn is known, Monte Carlo method is used. Using
NPA for these problems is a thousand times more effective than Monte Carlo method.

2 Probabilistic extensions

One of the most important problems that NPA deals with is to construct probability density
functions of random variables.

Let us start with the general case when (x1, . . . , xn) is a system of continuous random
variables with joint probability density function p(x1, . . . , xn) and the random variable z is a
function f (x1, . . . , xn)

z = f (x1, . . . , xn).

By probabilistic extension of the function f we mean a probability density function of the
random variable z.

Definition. The support of f , written supp( f ), is the set of points x ∈ R where f is
non-zero

supp( f ) = {x ∈ R| f (x) > 0}.

Consider the procedure for computing the probabilistic extensions for the one-dimensional
case. Let there be given a functional dependence

z = f (x),

where x is a random variable. Let x be the probability density function of a random variable x
with support [x, x]. Further {xi(z) ∈ [x, x]|i = 1, . . . , n} are the roots of the equation z = f (x).

It is necessary to find the probability density function f of the random variable z as prob-
abilistic extension f (·, x) of function f (x). To calculate probabilistic extension, we use

f (ξ, x) =
n∑

i=1

x(xi(ξ))
| f ′(xi(ξ))|

.

Example. Consider function z = x + t, where t is real number. Then probabilistic exten-
sions can be represented as

f (ξ, x, t) = x(ξ − t).

If z = tx, and t > 0, then probabilistic extensions can be represented as

f (ξ, x, t) =
1
t

x(
ξ

t
).

Theorem 1.[7] Let f (·, x1, x2, . . . , xn) be Probabilistic Extensions of function
f (x1, x2, . . . , xn) and for each real t function f (·, t, x2, . . . , xn) be probabilistic extensions of
the function f (t, x2, . . . , xn). Then

f (z, x1, x2, . . . , xn) =
∫

x1(t) f (z, t, x2, . . . , xn)dt (1)

Corollary. Theorem 1 infers the possibility of recursive computations for the general
form of probability extensions and reduction to the calculation of the one-dimensional case.

2

E3S Web of Conferences 75, 01004 (2019) https://doi.org/10.1051/e3sconf/20197501004
RPERS 2018



In many cases problems of distance sensing can be reduced to the numerical analysis of
functions

z = f (x1, x2, . . . , xn).

When the probability density of x1, x2, . . . , xn is known, Monte Carlo method is used. Using
NPA for these problems is a thousand times more effective than Monte Carlo method.

2 Probabilistic extensions

One of the most important problems that NPA deals with is to construct probability density
functions of random variables.

Let us start with the general case when (x1, . . . , xn) is a system of continuous random
variables with joint probability density function p(x1, . . . , xn) and the random variable z is a
function f (x1, . . . , xn)

z = f (x1, . . . , xn).

By probabilistic extension of the function f we mean a probability density function of the
random variable z.

Definition. The support of f , written supp( f ), is the set of points x ∈ R where f is
non-zero

supp( f ) = {x ∈ R| f (x) > 0}.

Consider the procedure for computing the probabilistic extensions for the one-dimensional
case. Let there be given a functional dependence

z = f (x),

where x is a random variable. Let x be the probability density function of a random variable x
with support [x, x]. Further {xi(z) ∈ [x, x]|i = 1, . . . , n} are the roots of the equation z = f (x).

It is necessary to find the probability density function f of the random variable z as prob-
abilistic extension f (·, x) of function f (x). To calculate probabilistic extension, we use

f (ξ, x) =
n∑

i=1

x(xi(ξ))
| f ′(xi(ξ))|

.

Example. Consider function z = x + t, where t is real number. Then probabilistic exten-
sions can be represented as

f (ξ, x, t) = x(ξ − t).

If z = tx, and t > 0, then probabilistic extensions can be represented as

f (ξ, x, t) =
1
t

x(
ξ

t
).

Theorem 1.[7] Let f (·, x1, x2, . . . , xn) be Probabilistic Extensions of function
f (x1, x2, . . . , xn) and for each real t function f (·, t, x2, . . . , xn) be probabilistic extensions of
the function f (t, x2, . . . , xn). Then

f (z, x1, x2, . . . , xn) =
∫

x1(t) f (z, t, x2, . . . , xn)dt (1)

Corollary. Theorem 1 infers the possibility of recursive computations for the general
form of probability extensions and reduction to the calculation of the one-dimensional case.

Let us consider the computing the integral (1). For simplicity, we represent (1) as a
quadrature ∫

x1(t) f (z, t, x2, . . . , xn)dt ≈
m∑

l=1

γlx1(tl) f (z, tl, x2, . . . , xn)

Further, we can also use numerical quadratures for computing f (z, tl, x2, . . . , xn). In general,
it is NP-hard problem with actual parallelization.

f (ξ, x1, . . . , xn)

f (ξ, t(1)
1 , x2, . . . , xn)

f (ξ, t(1)
1 , t

α
2 , x3, . . . , xn))

f (ξ, t(1)
1 , t

α
2 , t
β
3, x4, . . . , xn))...

... ...

... ...

... f (ξ, t(m)
1 , x2, . . . , xn)

... f (ξ, t(m)
1 , t

γ
2 , . . . , xn)

... f (ξ, t(m)
1 , t

γ
2 , t
δ
3, x4 . . . , xn)

...
. . .

...

f (ξ, tα1 , t
β
2, . . . , xn) · · · f (ξ, tγ1 , t

δ
2, . . . , xn)

Figure 1. The tree of parallel recursive programming

In Figure 1 shows the tree of parallel recursive organization of the computational process.
Thus, on the lower layer, it is necessary to compute the probabilistic extensions only for one
variable. Note that all computations on each layer are independent and can be computed
simultaneously.

Let x, y be system of two continuous random variables with probability density functions
x, y.

Densities arising as a result of arithmetic operations on random variables have the form

(x + y)(ξ) =
∫ x

x
x(t)y(ξ − t)dt;

if supp(x) = [x, x] and x > 0 then

(xy)(ξ) =
∫ x

x

1
t

x(t)y(
ξ

t
)dt,

(y/x)(ξ) =
∫ x

x
tx(t)y(tξ)dt.

These arithmetic operations completely coincide with the classical operations on the proba-
bility density functions.
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Let f (x1, . . . , xn) be a rational function. To construct a probabilistic extensions of f , we
replace the arithmetic operations by the arithmetic operation on random variables, while the
variables x1, x2, . . . , xn are replaced by probability density functions. It makes sense to call
the resulting probabilistic extensions of f as natural probabilistic extension.

Case 1. [7] Let x1, . . . , xn be independent random variables. If f (x1, . . . , xn) is a rational
expression where each variable xi occurs not more than once, then the natural probabilistic
extension approximates a probabilistic extension.

Case 2. [7] Let the function f (x1, . . . , xn) can be a change of variables, so that f (z1, . . . , zk)
is a rational function of the variables z1, . . . , zk satisfying the conditions of Case 1. The
variable zi is a function of xi, i ∈ Indi. and Indi be mutually disjoint. Suppose for each zi is
possible to construct a probabilistic extension. Then the natural extension f (z1, . . . , zk) would
be approximated by a probabilistic extension f (x1, . . . , xn).

Example. Let f (x1, x2) = (−x2
1 + x1) sin x2, and z1 = (−x2

1 + x1), z2 = sin x2. Notice that
it is possible to construct probabilistic extensions for the functions z1, z2, and then compute
f = z1 ∗ z2, which is a rational function satisfying the conditions of Case 1. So, natural
extension will approximate probabilistic extension for the function f (x1, x2).

3 Systems of linear algebraic equations

As one example of numerical simulation, let us consider solution of a system of linear alge-
braic equations

Ax = b, (2)

where A = (ai j) a random matrix and b = (bi) a random right-hand side vector respectively.
Suppose that the random matrix A and the vector b have independent components with prob-
ability densities A = (ai j), b = (bi) respectively and

A =



a11 a12 . . . a1n
...

...
. . .

...
an1 an2 . . . ann

 .

The support of the solution set can be represented as follows [6]

X = {x|Ax = b, A ∈ supp(A), b ∈ supp(b)}.

Construct the probabilistic extension of the solution vector x(·, A, b)

x1(·, A, b) =

∣∣∣∣∣∣∣∣∣∣

b1 a12 . . . a1n
...

...
. . .

...
bn an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
or

x1(ξ, A, b) =
�

a12(t12) . . . ann(tnn)
∑

bi∆i(t12, . . . , tnn)∑
a1i∆i(t12, . . . , tnn)

(ξ)dt12 . . . dtnn, (3)

where ∆i(t12, . . . , tnn) ∈ R are minors from the Cramer method for solving SLAE, ti j ∈
supp(ai j). The expression ( ∑

bi∆i(t12, . . . , tnn)∑
a1i∆i(t12, . . . , tnn)

)
(ξ)
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is computed using probabilistic arithmetic.
Example. Consider a system of linear algebraic equations

Ax = b, (4)

Let A = (ai j) be random matrix n = 2. The elements of the matrix A are independent and
distributed on the triangular law, a11, a22 distributed on the interval [2, 4], a21, a12 distributed
on the interval [−1, 1]. The vector b consists of independent components b1, b2, they are
distributed according to a triangular law on the interval [0, 2].

Figure 2. The boundary of the solution set and the joint probability density function of (x1, x2)

−0.5 0 0.5 1 1.5 2

0

1

2

Figure 3. The probability density function of random variable x1

The vector (x1, x2) solution of (4)

x1 =
a22b1 − a12b2

a11a22 − a12a21
,

x2 =
a11b2 − a21b1

a11a22 − a12a21
.

Figure 2 shows the joint probability density of the vectors (x1, x2). The value of the
probability is represented by shades of gray. A solid line is the boundary of the solution set.
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In this case, to compute x1, we replace random variables a22, a12 to the real t22, t12. Com-
puting the integral numerically for different ξ

x1(ξ) =
�

a22(t22)a12(t12)
(

t22b1 − t12b2

a11t22 − t12a21

)
(ξ)dt22dt12.

we obtain probability density function of x1.
Figure 3 shows the probability density function of random variable x1. The random vari-

able x1 is distributed on interval [−2/3, 2]. However, significant values are on the interval
[0, 1].

4 Conclusion

The proposed approach makes it possible to solve the problem of computing the probability
density function in the modeling processes with random input data. For these purposes we
propose using a parallel-recursive organization of the computational process. Thus, the im-
portant problem of computing probability extensions can be solved within parallel recursive
programming. This opens multifold possibilities for studying issues of Earth remote sensing
with random input data. Fast and accurate calculations are based on the properties of numeri-
cal arithmetic procedures over piecewise polynomial models developed within the framework
of numerical probabilistic analysis.
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