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Abstract. A new semi-supervised classification algorithm based on the 
non-parametric clustering algorithm HCA is proposed. The algorithm 
obtains hierarchical segmentation result where additional classes that are 
not represented in the training samples can be found. High performance of 
the algorithm allows using it in interactive mode. Experimental studies 
confirm that the proposed algorithm provides aerospace image 
classification in conditions of limited number of training samples.  

1 Introduction  
In many practical problems of data classification, such as satellite images, the process of 
collecting qualitative training samples (TS) is usually connected with considerable material 
and time expenditure [1-4]. Therefore, in practice training samples are often limited and 
unpresentable. Besides, TS can be missing for some classes causing an adverse effect on 
the classification quality. The use of insufficient training samples does not provide 
satisfactory quality of segmentation, especially in the analysis of large and complex scenes. 

In conditions of insufficient training samples, it is expedient to use classification 
methods with semi-supervised learning. In the course of their work, not only the 
information contained in the labelled training samples is used but also unlabelled 
(unclassified) data is utilized to construct the decision rule. The problem of semi-supervised 
classification can be considered in two formulations: as a classification that additionally 
uses information from unclassified data; and as clustering that uses additional conditions 
from training samples [1, 11]. The use of semi-supervised learning algorithms can reduce 
manual labour and improve the quality of classification results [3-4]. 

Over the past few years, works devoted to application of semi-supervised classification 
methods to satellite images have appeared [5-10], but their practical use is rather difficult 
due to the large number of configurable parameters and high computational costs [9]. Thus, 
it is urgent to develop new computationally efficient classification algorithms with semi-
supervised learning that will allow processing aerospace images in conditions of small 
volume of training samples. 
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This paper presents a new computationally efficient semi-supervised classification 
algorithm for aerospace image segmentation, based on the hierarchical grid-based 
clustering algorithm (HCA) [12], where training samples are taken into consideration at the 
hierarchy construction stage. The hierarchy itself is based on the set of small groups of data, 
obtained by nonparametric density estimation in the space of spectral features. The result is 
represented as a hierarchical segmentation, where, in addition to the required classes, there 
can be also found other classes not represented in the training samples. Algorithm’s high 
performance provides the expert with the opportunity to use it in an interactive mode, 
setting extra training samples to get more accurate results if necessary. Experimental results 
confirm that the proposed algorithm allows classifying images in conditions of small size 
training samples.  

2 Grid-based hierarchical clustering algorithm (HCA)  
This section provides a brief description of the clustering algorithm HCA [12], which can 
be divided into four main stages. 

At the first stage, a grid structure is formed in the feature space — it is divided into 
disjoint cells, the size of which depends on the parameter m. The density of a cell is 
determined through the number of data elements trapped in this cell. 

At the second stage, each non-empty cell is connected to the corresponding 
neighbouring cell with the highest density. Thus, the set of non-empty cells is divided into 
connected components {G1,…,GS}, which correspond to single-mode clusters. In the HCA 
algorithm, we take the connected components as the basic elements of the hierarchy. The 
number of obtained connected components is small relative to the number of all data 
elements, and therefore the hierarchy construction does not require high computational 
costs. 

At the third stage, the distances between all pairs of adjacent components are found. The 
distance is determined by estimating the density drop between the components. As a result, 
the corresponding distance matrix {hij} is formed. 

The distances between arbitrary connected components {ĥij} are determined through the 
distances between adjacent connected components {hij} as follows. Let ij = {Qij} be the 
set of all chains of the connected components Qij =  Gi = Gk1,…, Gkt , Gkt+1 ,…, Gkl = Gj  
such that for all t = 1,…,l−1, the components Gkt , Gkt+1 are adjacent. Then the distance 
between arbitrary connected components Gi and Gj is defined by the formula 
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If the set ij is empty, we assume that ĥij = 1. 
The advantage of the introduced distance {ĥij} is that it has ultrametric property [13], 

i.e. it is a metric that satisfies the strong triangle inequality: ĥij ≤ max (ĥik, ĥkj),  i, j, k. It is 
known that there exists a unique correspondence between the distance matrices with 
ultrametric property and dendrograms [14]. Therefore, such matrix describes some 
hierarchical partition. 

At the final stage, the single linkage algorithm (SLINK) for dendrogram construction is 
applied to the distance matrix {hij}. As a result, we obtain a dendrogram corresponding to 
the ultrametric {ĥij}. 

The clustering algorithm HCA allows obtaining hierarchical clustering structure of the 
data, while it is able to separate clusters intersecting in the feature space. The use of non-
parametric density estimation allows distinguishing clusters of complex shape. The 
implemented algorithm is capable of processing data with up to 8 dimensions and up to 
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several hundred millions of elements. At the same time, its computational efficiency allows 
clustering multispectral four-band images up to 100 million pixels in size within one second 
on a regular PC. 

3 Semi-supervised hierarchy construction  

In the proposed approach, the training samples are taken into account at the stage of 
hierarchy construction. When clustering with HCA algorithm, the hierarchy is formed with 
SLINK dendrogram construction method, which is applied to the distance matrix between 
adjacent connected components. The SLINK method for an n×n size matrix consists of  
(n-1) iterations. At each iteration, two nearest elements are united, while the distance to the 
new combined element is defined as the minimum of the distances to the elements to be 
united. There exists an algorithm [15] based on the use of an array of partial minima 
(containing indices and values of minimal elements in each row of the distance matrix), 
which allows finding the minimum matrix element at each iteration with O(n) operations. 
Thus, the overall achieved computational complexity of the SLINK algorithm is O(n2). 

Within semi-supervised approach, before the dendrogram construction, we establish 
classes for the connected components due to the available training samples. The component 
is assigned to the class of the training samples, which fall into this component. If the 
component contains training samples from different classes, then this component is marked 
as a `conflicting` one, and its class is established by voting of the TS elements. Components 
that do not contain a single TS element remain unlabelled. At this stage, the distances 
between the `non-conflicting` components belonging to the same class are set to zero. Thus, 
at the stage of hierarchy construction, such components are immediately united into one 
class. 

Component’s class labels are considered at the stage of dendrogram construction. At 
each iteration of the SLINK algorithm, the class labels of the elements to be united are 
checked. If they belong to different classes, then the union does not take place. Instead, the 
distance between them is set to one, and the minima in the corresponding rows of the 
matrix are updated. In other cases, the union takes place as usual. At the same time when a 
labelled element is united with an unlabelled one, the combined element inherits the class 
of the labelled element. Thus, the unlabelled components are eventually united with the 
closest labelled components in the metric (1). As a result, the top of the hierarchy consists 
of the combined components belonging to the required classes, as well as the groups of 
unlabelled components that turned out to be at distance 1 from all the marked ones 
(meaning they represent their own classes). 

It is possible to retrieve data partitioning with various detail degree from the given 
hierarchical structure by varying the dendrogram cut value. Moreover, the classes known 
from training samples will stay separated at all levels. After obtaining the result, the user 
can interactively add new elements to the training samples, and the algorithm will only 
require performing anew the dendrogram construction step to update the result, which does 
not take significant time. 

4 Experimental studies  

In this section, the results of the proposed semi-supervised classification algorithm on 
model data and images are presented. It is shown that with the use of small size training 
samples (TS), the proposed approach allows distinguishing similar classes successfully, 
while avoiding unnecessary fragmentation. 
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Fig. 1,a represents the two-dimensional model dataset consisting of five classes with 
normal distribution, simulating vegetation classes (birch forests, coniferous forests, 
meadow vegetation, wetlands, agricultural land) on Landsat satellite image in red and green 
spectral features. Training samples (8 points) are marked on the image with black dots. 
With the use of these limited TS, classification algorithms make significant mistakes on the 
red class. For example, overall accuracy of Minimum Distance classification is 93,32 % 
(Fig. 1,c). At the same time, clustering algorithms have a problem to separate strongly 
intersecting purple and blue classes. Expectation-maximization clustering overall accuracy 
reaches only 89,28 % (Fig. 1,d). Nevertheless, the proposed semi-supervised classification 
algorithm managed to successfully extract all classes with 96,24 % overall accuracy 
(Fig. 1,b). 

(a)  (b)  

(c)  (d)  

Fig. 1. Model dataset with TS tags (a); semi-supervised classification result (b); Minimum Distance 
classification result (c); Expectation-maximization clustering result (d) 

Fig. 2 presents the model colour image containing the ring and the background, which 
consist of gradient transitions of various colours. Also, the image contains tags of the 
training samples (4 points for the ring and 5 points for the background). When clustering 
this image, a fragmented segmentation result is obtained, where both classes break up into 
many clusters, otherwise the ring and the background cannot be separated. However, with 
the given limited training samples, the proposed semi-supervised approach successfully 
distinguishes required classes (Fig. 2). 

Fig. 3 shows the semi-supervised classification result of the high spatial resolution 
multispectral satellite image with training samples consisting of only 8 points. As a result, 
all 6 required classes were successfully extracted, including a forest that is extremely 
heterogeneous in its spectral characteristics. Moreover, the proposed algorithm additionally 
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marked out a class that is not represented in the training samples, which corresponds to a 
football field (marked in white colour). 

   
Fig. 2. Model image with TS tags (left); HCA algorithm clustering result (centre); semi-supervised 
classification result (right) 

  
Fig. 3. WorldView-2 satellite image (RGB composite, bands 4, 6, 1) with TS tags and the result of the 
semi-supervised classification algorithm 

5 Conclusion 
The proposed semi-supervised classification algorithm can perform aerospace image 
segmentation under conditions of small and incomplete training samples. This provides the 
potential to the effective use of data obtained from field studies, which are commonly not 
used directly in the automated satellite image processing. Hierarchical representation of the 
segmentation result and high performance of the algorithm significantly facilitate the work 
of an expert. 

For further research, we are planning to implement automatic partition of the 
`conflicting` components with a view to better fit with the training samples.  
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