
Application of parallel version two-dimensional
fast Fourier transform algorithm, analog of the
Cooley-Tukey algorithm, for digital image
processing of satellite data

Mikhail Noskov 1*, Valeriy Tutatchikov1, Mikhail Lapchik2, Marina Ragulina2, and Tatiana
Yamskikh 1

1 Siberian Federal University, Institute of Space and Information Technology,
Svobodny prospect 79, Krasnoyarsk, 660041, Russian Federation
2 Omsk State Pedagogical University, Naberezhnaya Tukhachevskogo 14, Omsk, 644099, Russian
Federation

Abstract. In modern systems of remote sensing two-dimensional fast
Fourier transform (FFT) has been widely used for digital processing of
satellite images and subsequent image filtering. This article provides a
parallel version two-dimensional fast Fourier transform algorithm, analog
of the Cooley-Tukey algorithm and its implementation for processing the
satellite image of Krasnoyarsk and its suburban areas.

Introduction
At present, Earth remote sensing is closely related to digital image processing, as the
aerospace images that are rich in detail are commonly represented in digital form of a raster
type. Adjustment of contrast and brightness, spatial filtering, Fourier transform and
subsequent frequency filtering are often used to improve image quality [1]. The
traditionally applied algorithm for computing two-dimensional fast Fourier transform (FFT)
is the sequential application of a one-dimensional FFT, first for all rows, then for all
columns. The article describes a version two-dimensional fast Fourier transform algorithm,
analog of the Cooley-Tukey algorithm, with the reduced number of complex operations
compared to the traditionally used algorithm. A variant of the algorithm parallelization to
accelerate calculations is shown in the article. The use of the algorithms to perform image
processing on digital images is considered.

The filtering procedure is implemented in several stages:
• Data reading and swapping
• Parallel computation of the Cooley-Tukey algorithm
• Filtering the obtained Fourier transform
• Reverse FFT Calculation
• Image acquisition

* Corresponding author: mvnoskov@yandex.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 75, 01012 (2019)	 https://doi.org/10.1051/e3sconf/20197501012
RPERS 2018

Detailed description of these stages can be found in [1]. A two-dimensional analogue of
the Cooley-Tukey algorithm is considered in [2], its multidimensional variant in [3] and a
more detailed description of the algorithm is provided in [4]. In this paper we present a
parallel two-dimensional version of the Cooley-Tukey algorithm. First, we consider two
dimensional analog of the Cooley-Tukey algorithm for computing the fast Fourier
transform.

The Cooley-Tukey algorithm

Given a function f(x,y) of two-dimensional periodic signal with values in the complex
space, where x,y = 0, 1, …, 2s-1, s is a positive integer. Grayscale image that is 2s pixels in
height and width can be taken as an example of such a function. The value of the function
f(x,y) is a complex number, which real component is equivalent to the brightness values of
the corresponding pixel with coordinates (x,y) in the range 0-255, and the imaginary
component of the number is zero. Then the Fourier transform F(u,v) of this signal can be
represented as follows:

(1)
   

 
N

vyuxiN

u

N

v

eyxfvuF







 

21

0

1

0

,,

where N=2s, x,y = 0,1,…,N-1.
We convert formula (1) as follows: the coordinates x and y are decomposed into even

and odd parts. Then, the initial sum can be divided into four equations:

(2)

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

),(),(),(),(

112,112

112,12

12,11212,12

112,112112,12

12,11212,12,

11

22

01

2

10

2

00

1

0

1

0

1212222

1

0

1

0

121222

1

0

1

0

1212221

0

1

0

12122

)112()112(2)112(122

1

0

1

0

12)112(212122

vugeevugevugevug

eyxfee

eyxfe

eyxfeeyxf

eyxfeyxf

eyxfeyxfvuF

N
iv

N
iu

N
iv

N
iu

N

u

N

v

N
yvxui

N
iv

N
iu

N

u

N

v

N
yvxui

N
iv

N

u

N

v

N
yvxui

N
iuN

u

N

v

N
yvxui

N
yvxui

N
yvxui

N

u

N

v

N
yvxui

N
yvxui































































































Each of the sums g(u,v) obtained in (2) is a FFT signal with the elements for 11 22   ss

even or odd coordinates of the source signal f(x,y)
Then, in the next step , we divide the coordinates u and v into two equal-sized subsets

2u1, 2v1 and 2u1+N/2, 2v1+N/2, respectively, u1,v1 = 0,1,…,N/2-1. Then for the factors

 and from the second subset we get:N
iu

e
2

N
iv

e
2

(3)

.

,
)12(2)12(2)2/(2)12(2)2/12(2

)12(2)12(2)2/(2)12(2)2/12(2

N
vi

iN
vi

N
Ni

N
vi

N
Nvi

N
ui

iN
ui

N
Ni

N
ui

N
Nui

eeeeee

eeeeee

















2

E3S Web of Conferences 75, 01012 (2019)	 https://doi.org/10.1051/e3sconf/20197501012
RPERS 2018

We plug (3) into the formula (2) to get:

 (4)

),2/1,2/1(

)2/1,2/1()2/1,2/1(

)2/1,2/1()2/1,2/1(
),2/1,1()2/1,1(

)2/1,1()2/1,1()2/1,1(

),1,2/1()1,2/1(

)1,2/1()1,2/1()1,2/1(

),1,1(

)1,1()1,1()1,1()1,1(

11

1212
01

12

10

12
00

11

1212

01

12
10

12

00

11

1212

01

12
10

12

00

11

1212
01

12

10

12

00

NvNugee

NvNugeNvNuge

NvNugNvNuF
NvugeeNvuge

NvugeNvugNvuF

vNugeevNuge

vNugevNugvNuF

vugee

vugevugevugvuF

N
vi

N
ui

N
vi

N
ui

N
vi

N
ui

N
vi

N
ui

N
vi

N
ui

N
vi

N
ui

N
vi

N
ui

N
vi

N
ui


















































where u1,v1 = 0,1,…,N/2-1.
Formula (4) describes the two-dimensional fast Fourier transform batterfly

in analog of Cooley-Tukey algorithm. It is schematically depicted in Figure 1. With this
butterfly we can split the source signal and the Fourier transform with elements into four
sub-signals each with the number of elements [4]. This reduces the number of 11 22   ss

multiplications and additions of complex numbers required to compute FFT.

Fig. 1. Two-dimensional fast Fourier transform batterfly in analog of Cooley-Tukey
algorithm

Decomposition (4) can be applied to each sub-signal g(u,v) several times until we get
sub-signals of 4 elements, which FFTs are being computed directly. Then for the signal
f(x,y) of the elements the total number of multiplications required to compute NN 

complex numbers will be , and the number of additions - [3]. NN 2
2 log4

3 NN 2
2 log2

For comparison, the standard method of computing two-dimensional FFT by rows and
columns will require multiplications and additions.NN 2

2 log NN 2
2 log2

3

E3S Web of Conferences 75, 01012 (2019)	 https://doi.org/10.1051/e3sconf/20197501012
RPERS 2018

The parallel Cooley-Tukey algorithm
To test the running time of an algorithm for calculating two-dimensional fast Fourier

transform algorithm, analog of the Cooley-Tukey algorithm, a simulation program was
written in the C++ programming language [4]. Two principal methods of algorithm
parallelization were used: OpenMP, targeted toward use on shared memory systems, and
MPI for distributed memory systems. Testing was carried out on the cluster node of the
SFU supercomputer with IBM HS21 XM Xeon Quad core E5450 3.0 GHz, 64 Gb RAM
[5]. The result of testing for a system with distributed memory on a single cluster node is
presented in Table 1.

The two-dimensional analogue of the Cooley-Tukey algorithm processes the signal with
the number of samples in s iterations. In the first iteration, due to the preliminary ss 22 
permutation of the elements, the signal data is divided into quads of related (vertically and
horizontally) elements spaced by one element from each other; in the second iteration, into
quads of elements separated by two elements from each other; in the third iteration - by the
22 element; in the last s- iteration by- 2s-1 element. For such implementation of the
algorithm, in shared memory systems parallel data structures are designed by splitting
multiple data in each iteration into arrays of interconnected sets of the elements for each
separate thread. In a distributed memory systems, a similar partitioning into sets of related
data occurs at each iteration with subsequent transfer of data between the processes for
independent computations.

Table 1. The result of testing a two-dimensional parallel analogue of the Cooley-Tukey
algorithm in a system with distributed memory, in seconds

Size The number of
processes

2D FFT, for rows and
columns

2D Cooley-Tukey FFT

1 0,490 0,310
2 0,310 0,310
4 0,220 0,270
8 0,180 0,270

1024*1024

16 0,180 0,350
1 2,300 1,330
2 1,550 1,260
4 1,060 0,950
8 0,840 0,850

2048*2048

16 0,850 1,000
1 9,880 5,850
2 6,240 4,590
4 4,370 3,590
8 3,430 3,060

4096*4096

16 3,740 3,390
1 43,210 25,190
2 26,990 19,160
4 18,550 14,870
8 14,520 13,130

8192*8192

16 14,090 11,700

The data are presented graphically in Figure 2, where the FFT algorithm by rows and
columns is denoted by FFT RC, and the analogue of the Cooley-Tukey algorithm by FFT
CT.

4

E3S Web of Conferences 75, 01012 (2019)	 https://doi.org/10.1051/e3sconf/20197501012
RPERS 2018

Fig. 2. Comparison of running time for various algorithms

Image filtering
LandSat-8 image of Krasnoyarsk and its surrounding areas dated April 7, 2016 [6], which is
shown in Figure 1 on the left, was used as a test signal. The original image resolution is
8081 * 8171 pixels, it was converted to the nearest power of two: and then scaled for the
powers 10-15. On the right side of the figure 3 the result from high-pass filtering is shown.
In this case, the contours are more vivid: the river line, the boundaries of the rocky areas.

Fig. 3. Original image - The result from high-pass filtering

The original image is shown on the left side of the figure 4. The result from low-pass
filtering is on the right side. In this case, small sharp changes in mountainous terrain are not
so noticeable on the general background, that is, small details have been removed.

5

E3S Web of Conferences 75, 01012 (2019)	 https://doi.org/10.1051/e3sconf/20197501012
RPERS 2018

Fig. 4. Original Image - Result from low pass filtering

Conclusion
It is shown that the parallel analogue of the Cooley-Tukey algorithm for computing two-
dimensional FFT is executed on average 4 times faster than the standard method for
computing two-dimensional fast Fourier transform by rows and columns.

References
1. R.C. Gonzalez and R.E. Woods, Digital Image Processing, Second Edition, Pearson

Education, Inc (2004)
2. R. Blahut, Fast algorithms for digital signal processing, Addison-Wesley Publishing

Company (1985)
3. V.S. Tutatchikov, O.I. Kiselev, M.V. Noskov, Calculating the n-Dimensional Fast

Fourier Transform, PRIA, 23(3), 429-433 (2013)
4. V.S. Tutatchikov, Two-dimensional fast Fourier transform, Proceeding of 11th

International Forum on Strategic Technology (IFOST-2016), 495 – 498 (2016)
5. Supercomputer complex of SFU Access mode: http://cluster.sfu-kras.ru/
6. LandSat-8 image of Krasnoyarsk and its surrounding areas Access mode:

http://earthexplorer.usgs.gov/

6

E3S Web of Conferences 75, 01012 (2019)	 https://doi.org/10.1051/e3sconf/20197501012
RPERS 2018

