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Abstract. In modern systems of remote sensing two-dimensional fast 
Fourier transform (FFT) has been widely used for digital processing of 
satellite images and subsequent image filtering. This article provides a 
parallel version two-dimensional fast Fourier transform algorithm, analog 
of the Cooley-Tukey algorithm and its implementation for processing the 
satellite image of Krasnoyarsk and its suburban areas. 

Introduction
At present, Earth remote sensing is closely related to digital image processing, as the 
aerospace images that are rich in detail are commonly represented in digital form of a raster 
type. Adjustment of contrast and brightness, spatial filtering, Fourier transform and 
subsequent frequency filtering are often used to improve image quality [1]. The 
traditionally applied algorithm for computing two-dimensional fast Fourier transform (FFT) 
is the sequential application of a one-dimensional FFT, first for all rows, then for all 
columns. The article describes a version two-dimensional fast Fourier transform algorithm, 
analog of the Cooley-Tukey algorithm, with the reduced number of complex operations 
compared to the traditionally used algorithm. A variant of the algorithm parallelization to 
accelerate calculations is shown in the article. The use of the algorithms to perform image 
processing on digital images is considered.

The filtering procedure is implemented in several stages:
• Data reading and swapping
• Parallel computation of the Cooley-Tukey algorithm 
• Filtering the obtained Fourier transform
• Reverse FFT Calculation
• Image acquisition
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Detailed description of these stages can be found in [1]. A two-dimensional analogue of 
the Cooley-Tukey algorithm is considered in [2], its multidimensional variant in [3] and a 
more detailed description of the algorithm is provided in [4]. In this paper we present a 
parallel two-dimensional version of the Cooley-Tukey algorithm. First, we consider two 
dimensional analog of the Cooley-Tukey algorithm for computing the fast Fourier 
transform.

The Cooley-Tukey algorithm

Given a function f(x,y) of two-dimensional periodic signal with values in the complex 
space, where x,y = 0, 1, …, 2s-1, s is a positive integer. Grayscale image that is 2s pixels in 
height and width can be taken as an example of such a function. The value of the function 
f(x,y) is a complex number, which real component is equivalent to the brightness values of 
the corresponding pixel with coordinates (x,y) in the range 0-255, and the imaginary 
component of the number is zero. Then the Fourier transform F(u,v)  of this signal can be 
represented as follows:
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where N=2s, x,y = 0,1,…,N-1.
We convert formula (1) as follows: the coordinates x and y are decomposed into even 

and odd parts. Then, the initial sum can be divided into four equations:
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Each of the sums g(u,v) obtained in (2) is a FFT signal with the elements for 11 22   ss

even or odd coordinates of the source signal f(x,y)
Then, in the next step , we divide the coordinates u and v into two equal-sized subsets 

2u1, 2v1 and 2u1+N/2, 2v1+N/2, respectively, u1,v1 = 0,1,…,N/2-1. Then for the factors 

 and  from the second subset we get:N
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We plug (3) into the formula (2) to get:

 (4)
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where u1,v1 = 0,1,…,N/2-1.
Formula (4) describes the two-dimensional fast Fourier transform batterfly 

in analog of Cooley-Tukey algorithm. It is schematically depicted in Figure 1. With this 
butterfly we can split the source signal and the Fourier transform with elements into four 
sub-signals each with the number of elements  [4]. This reduces the number of 11 22   ss

multiplications and additions of complex numbers required to compute FFT. 

Fig. 1. Two-dimensional fast Fourier transform batterfly in analog of Cooley-Tukey 
algorithm

Decomposition (4) can be applied to each sub-signal g(u,v) several times until we get 
sub-signals of 4 elements, which FFTs are being computed directly. Then for the signal 
f(x,y) of the elements the total number of multiplications required to compute NN 

complex numbers will be , and the number of additions -  [3]. NN 2
2 log4

3 NN 2
2 log2

For comparison, the standard method of computing two-dimensional FFT by rows and 
columns will require multiplications and additions.NN 2

2 log NN 2
2 log2
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The parallel Cooley-Tukey algorithm
To test the running time of an algorithm for calculating two-dimensional fast Fourier 

transform algorithm, analog of the Cooley-Tukey algorithm, a simulation program was 
written in the C++ programming language [4]. Two principal methods of algorithm 
parallelization were used: OpenMP, targeted toward use on shared memory systems, and 
MPI for distributed memory systems. Testing was carried out on the cluster node of the 
SFU supercomputer with IBM HS21 XM Xeon Quad core E5450 3.0 GHz, 64 Gb RAM 
[5]. The result of testing for a system with distributed memory on a single cluster node is 
presented in Table 1.

The two-dimensional analogue of the Cooley-Tukey algorithm processes the signal with 
the number of samples in s iterations. In the first iteration, due to the preliminary ss 22 
permutation of the elements, the signal data is divided into quads of related (vertically and 
horizontally) elements spaced by one element from each other; in the second iteration, into 
quads of elements separated by two elements from each other; in the third iteration - by the 
22 element; in the last s- iteration by- 2s-1 element. For such implementation of the 
algorithm, in shared memory systems parallel data structures are designed by splitting 
multiple data in each iteration into arrays of interconnected sets of the elements for each 
separate thread. In a distributed memory systems, a similar partitioning into sets of related 
data occurs at each iteration with subsequent transfer of data between the processes for 
independent computations.

Table 1. The result of testing a two-dimensional parallel analogue of the Cooley-Tukey 
algorithm in a system with distributed memory, in seconds

Size The number of 
processes

2D FFT, for rows and 
columns

2D Cooley-Tukey  FFT 

1 0,490 0,310
2 0,310 0,310
4 0,220 0,270
8 0,180 0,270

1024*1024

16 0,180 0,350
1 2,300 1,330
2 1,550 1,260
4 1,060 0,950
8 0,840 0,850

2048*2048

16 0,850 1,000
1 9,880 5,850
2 6,240 4,590
4 4,370 3,590
8 3,430 3,060

4096*4096

16 3,740 3,390
1 43,210 25,190
2 26,990 19,160
4 18,550 14,870
8 14,520 13,130

8192*8192

16 14,090 11,700

The data are presented graphically in Figure 2, where the FFT algorithm by rows and 
columns is denoted by FFT RC, and the analogue of the Cooley-Tukey algorithm by FFT 
CT.
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Fig. 2. Comparison of running time for various algorithms 

Image filtering
LandSat-8 image of Krasnoyarsk and its surrounding areas dated April 7, 2016 [6], which is 
shown in Figure 1 on the left, was used as a test signal.  The original image resolution is 
8081 * 8171 pixels, it was converted to the nearest power of two: and then scaled for the 
powers 10-15. On the right side of the figure 3 the result from high-pass filtering is shown. 
In this case, the contours are more vivid: the river line, the boundaries of the rocky areas.

Fig. 3. Original image - The result from high-pass filtering 

The original image is shown on the left side of the figure 4. The result from low-pass 
filtering is on the right side. In this case, small sharp changes in mountainous terrain are not 
so noticeable on the general background, that is, small details have been removed.
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Fig. 4. Original Image - Result from low pass filtering 

Conclusion
It is shown that the parallel analogue of the Cooley-Tukey algorithm for computing two-
dimensional FFT is executed on average 4 times faster than the standard method for 
computing two-dimensional fast Fourier transform by rows and columns.
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