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Abstract. The similarity analysis of the monthly electric energy demand 
time series sequence patterns are shown. The similarity-based forecasting 
models are allowed to be created because a strong relationship between 
input and output patterns exists. The chi-square test and the correlation 
tables were calculated for a few definitions of patterns.  

1 Introduction 

The monthly load time series for the national power systems are characterised by annual 
periodic variations. The annual variations are mainly related to the variable length of the 
day during the year and differences in air temperature depending on the season [1]. The 
analogies between time-series sequences with periodic variations are used successfully by 
the pattern similarity-based forecasting models. It is possible to deduce the course of the 
time series in any period based on its past behaviour [2].  

The procedure for creating a forecasting model using the similarity of time-series 
sequences is as follows.  First, the time series is divided into patterns, which usually cover a 
period of a few to several points. In the case studied in this paper, patterns are the points in 
a sequence of the monthly loads of the Polish power system (1998-2014) processed using 
specific functions.  The pattern similarity-based forecasting methodology relies on the 
assumption that if the input patterns xa and xb are similar, then similar are also the output 
patterns ya and yb, which represent the time-series fragments following the fragments 
represented by the xa and xb patterns.  

In literature medium-term load forecasting (MTLF) methods are categorized into two 
groups [4]. The first group consists of the conditional modelling approach and uses 
management, economic analysis and long term planning [5]. A MTLF model of this group 
is described in [6], where a few macroeconomic indicators, e.g. consumer price index are 
proceeded as inputs [5]. 

The second category consists of the autonomous modelling approach. This type requires 
a smaller set of inputs: firstly past loads and optionally e.g. weather variables. Models from 
this category are more suited for stable economies [5]. This group is represented by 
classical forecasting e.g. ARIMA or linear regression [7], and computational intelligence 
methods, like neural networks [8]. 
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2 Pattern-based representation of time series 

In case of forecasting m points in a series, the forecast fragment is denoted by Yi = {Ei+1 
Ei+2 … Ei+m}. Let us denote the preceding Yi fragment of the series with a length of n as Xi 

= {Ei–n+1 Ei–n+2 … Ei}. The fragment Xi is represented by input pattern xi = [xi,1 xi,2 … xi,n]
T. 

In this paper, the following 4 different definitions of the points in sequence Xi will apply 
[1]: 
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measure of their dispersion. 
In case of definition given in (1), the points in sequence Xi are copied without 

processing. The patterns (3) consist of differences between the values of the series and the 
mean value over the period covered by sequence Xi. Their quotient is defined using the 
equation (2). Pattern (4) is a normalised vector [Ei-n+1 Ei-n+ 2 ... Ei

T]. The mean value of the 
components of this pattern is zero, and their variance is identical for all xi sequences. 
The output pattern yi = [yi,1 yi,2 … yi,n]

T represents the fragment Yi. The components of the 
output pattern are given as 4 different definitions [1]:  
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The iE  and Di are determined from sequence  Xi. They allow for the determination of 

the forecast of demand based on the forecast of yi returned by the forecasting model. For 
this purpose, the transformed formulas (5)-(8) are used. For example, if y is defined using 
(8), the forecast of demand is determined using the equation [1]:  

 iititi EDyE  ,
))

. (9) 

The patterns xi and yi, which represent the preceding sequence and the forecast 
sequence, are combined in pairs (xi, yi). A set of these pairs for a historical time series is 
used to create a forecasting model (for parameter estimation, teaching).   
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3 Similarity analysis of the patterns 

In order to confirm the validity of the assumption that if input patterns are similar, then 
output patterns are similar too, the analysis of the dependence between input patterns x and 
output patterns y is carried out. Similarity is measured using the Euclidean metric. 

The units of the statistical population to be analysed are pairs of patterns [1] 

 ((xi, yi), (xj, yj)), (10) 

where: i = 1, 2, ..., N; j = 1, 2, ..., N; i ≠ j; N – the number of pairs of patterns. The pattern 
lengths equal to N=12 were adopted. 

The size of the population is equal to M = N(N-1). The feature Dx which determines the 
distance between two patterns x and the feature Dy which means the distance between a pair 
of patterns y are defined. The distances between all pairs of patterns are the vector of pairs 
of realisations of the analysed random variables [2] 

 [(d(xi, xj), d(yi, yj))] =  
 = [(d(x1, x2), d(y1, y2)) (d(x1, x3), d(y1, y3)) ...  (11) 
 …(d(xn, xn-1), d(yn, yn-1))],  

where: d(xi, xj) is the distance between a pair of patterns xi and xj; d(yi, yj) is the distance 
between a pair of patterns yi and yj.  

To demonstrate stochastic dependence between random variables Dx and Dy, the null 
hypothesis (H0) is formulated: the existence of differences in sizes of the population units 
in defined categories of values of features Dx and Dy is caused by the random nature of the 
sample [2]. The null hypothesis can be verified using the 2 test. For this purpose, 
a correlation table (Table 1) is created, illustrating the empirical joint distribution of 
features Dx and Dy. The critical value for 64 degrees of freedom (9 categories for features 
Dx and DY) is 83.68. The 2 test values are within the critical area. This entitles to reject the 
null hypothesis and adopt the alternative hypothesis. The number of categories for feature 
Dx in the table is equal to g, and for feature Dy it is h. Quantiles of the order of 0, 1/g, 2/g, 
…,1 were adopted as category limits for Dx and quantiles of the order of 0, 1/h, 2/h, …,1 
were adopted as category limits for Dy. High values of the Cramer contingency coefficient, 
V, and the Pearson correlation coefficient, ρ, prove strong relationships between Dx and Dy 
[2]: 

Table 1. Correlation table of features Dx and Dy for patterns (4)-(8). 

        Dy 
Dx 

0-0.78 0.78-
0.97 

0.97-
1.15 

1.15-
1.34 

1.34-
1.50 

1.50-
1.64 

1.64-
1.77 

1.77-
1.94 

1.94-
3.06 

Total 

0-0.68 3021 518 59 22 0 0 0 0 0 3620 
0.67-0.89 599 2230 626 121 41 3 0 0 0 3620 
0.89-1.07 0 871 1983 578 125 54 9 0 0 3620 
1.07-1.33 0 1 952 1949 489 116 59 47 7 3620 
1.33-1.50 0 0 0 881 1710 702 223 52 52 3620 
1.50-1.71 0 0 0 69 1089 1306 742 296 118 3620 
1.71-1.81 0 0 0 0 166 1182 1245 727 300 3620 
1.81-1.89 0 0 0 0 0 246 1118 1453 803 3620 
1.89-1.99 0 0 0 0 0 11 224 1045 2340 3620 

Total 3620 3620 3620 3620 3620 3620 3620 3620 3620 32580 
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where: xD , yD  are mean values of Dx and Dy, and SDx, SDy are standard deviations of these 

features. 

Table 2. ρ, V and 2 statistics values for the population determined by expression (10). 

patterns ρ V 2 

(1)-(5) 0.8849 0.9096 242593.61 
(2)-(6) 0.9005 0.9090 242303.21 
(3)-(7) 0.8982 0.9087 242131.87 
(4)-(8) 0.8543 0.9068 241104.13 

 
Table 2 shows the 2, V and ρ statistics values for different pattern definitions. In the 

pattern similarity-based methods, the nearest neighbours of input pattern x are found in the 
set of data and patterns y paired with them are used to construct the forecast pattern. Next, 
it is demonstrated that there is a statistically significant relationship between the distance of 
pattern xi and its kth nearest neighbour: xi*,k, k = 1, 2, ..., K and the distance between patterns 
yi and yi*,k paired with them. In this work K=5 and it is the number of the last kth nearest 
neighbour. 
The units of the statistical population to be analysed are pairs of points [1] 

 ((xi, yi), (xi*,k, yi*,k)), (14) 

where: i=1,2, …, n; k=1, 2, …, K; xi*,k yi*,k – the kth nearest neighbour of pattern xi and the 
pattern yi paired with it.  
The population size is n*K. The distances between all pairs of patterns determined by 
expression (14) are the vector of pairs of realisations of the analysed random variables [2] 

 [(d(xi, xi*,k), d(yi, yi*,k))] =   
 = [(d(x1, x1*,1), d(y1, y1*,1)) (d(x1, x1*,2), d(y1, y1*,2)) ... (15) 
 …(d(xn, xn*,K), d(yn, yn*,K))],  

where: d(xi, xi*,k) is the distance between a pair of patterns xi and its nearest kth neighbour 
xi*,k, and d(yi, yi*,k) is the distance between a pair of patterns yi and d(yi, yi*,k). 
To demonstrate stochastic dependence between random variables Dx and Dy, the null 
hypothesis (H0), identical to that for the population determined by expression (10), is 
formulated.   

Table 3.  ρ, V and 2 statistics values for the population determined by expression (14), K = 5. 

patterns ρ V 2 

(1)-(5) 0.2061 0.8908 6428.24 
(2)-(6) 0.0401 0.8902 6418.72 
(3)-(7) 0.0193 0.8901 6417.74 
(4)-(8) 0.0468 0.8904 6421.60 
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Table 3 shows the 2, V and ρ statistics values for different pattern definitions and K 
=5. Low values of ρ arise from a large dispersion of values among the intervals in the 
correlation table. They are not concentrated around diagonals. This results from the fact that 
all input patterns are collected and there are only 5 output patterns for each input pattern. 
Therefore, the maximum distance Dy is shorter and the dispersion of patterns y within these 
intervals is higher.  

Associated with the nearest neighbour of input pattern xi, the forecast pattern yi*, 1 may 
not be the nearest neighbour of the forecast pattern yi. The ratio of the distance between 
patterns yi and yi*,k (pattern associated with the kth successive neighbour of pattern xi) and 
the distance between patterns yi and yi',k (pattern associated with the k

th successive 
neighbour of pattern yi) is calculated [2] 
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The best accuracy of the forecasting model is achieved when patterns yi',k, yi*,k are 
identical, i.e. wd takes the value 0. If these patterns are very similar, it means a strong link 
between data and good quality of the model. However, if they vary considerably, it means a 
weak link between random variables and poor quality of the model.  

In Figure 1 relationship between distances Dx and Dy are shown. It is drown in two 
variants: depending on y*  (red colour) and y’ (blue colour). As can be seen in the Figure 1,  
the distances Dx and Dy are very similar. 

 

Fig. 1. Relationship between Dx and Dy for patterns determined by expressions (4)-(8). 

In Figure 2, the monthly loads of the Polish power system (1998-2014) are visualised. 
For the analysed time series, these patterns are characterised by a high degree of similarity. 
Figure 3 shows mean values of wd from successive neighbours of each pattern. It can be 
observed that these values are highest for the first neighbours. The values are lower than 0 
in the vicinity of the 15th neighbour. It means that these are the nearer neighbours of pattern 
y. This suggests the use of models that consider several neighbours of pattern x to improve 
the accuracy of forecasting.  
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Fig. 2. Monthly loads of the Polish power system. 

 

Fig. 3. Mean values of wd depending on indices of the nearest neighbours of pattern for patterns 
determined by expression (4)-(8). 

4 Decomposition of series  

Decomposition of a time series can be described using the formula [3]: 

 ),,,( tttt zmsfX   (17) 

where f() represents the function, st is a seasonal component, mt is a long-term trend and zt 
is a random disturbance. 

There are two most popular decomposition models [3]: 
additive decomposition 

 ,tttt zmsX   (18) 

multiplicative decomposition 

 .tttt zmsX   (19) 
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If the variance around the trend or the size of seasonal variations does not change with 
the series level, an additive decomposition should be used.  
In the event when the variance or the amplitude of seasonal variations is proportional to the 
series level, a multiplicative decomposition will be more suitable. 

To isolate the components of a series (trend, seasonal and random variations), different 
methods are used. Two groups of methods can be distinguished: 
- parametric methods, in which the model for regular components within a series is adopted 
(e.g. linear or square model). In this case, the estimators (estimates) need to be found for 
unknown parameters, 
- non-parametric methods, in which the trend is not determined in the form of an analytical 
formula. The advantage of this group is a greater flexibility. 
A popular trend determination method is the use of the moving average, which is defined as 
follows [3]:  

   



q

qj jtX
q

tm
12

1
)( , (20) 

where q is the parameter (an order of the moving average) used to control the data 
smoothness degree [3]. 

 

Fig. 4. Smoothing using the moving average for the Polish power system (PL) time series. 

The graph illustrating smoothing using the moving average for the analysed time series 
is shown in Figure 4. Three types of moving average was shown. As can be seen, higher 
values of the q parameter give more smoothness degree of the moving average function. 

If we want to assign different weights to the points of the series depending on the time 
distance from the moment t, we use the weighted moving average, which takes the 
following form [3]: 

   
q

qj jtj Xwtm ,)(  (21) 

 where w-q+w-q+1+⋯+wq-1+wq=1 and wj=w-j (for symmetric moving average). 
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Fig. 5. Additive decomposition of time series PL. 

 

Fig. 6. Multiplicative decomposition of time series PL. 

As a result of the use of one of the decomposition methods, the estimates are obtained 

for individual components of the series, i.e. trend and seasonality ( tŝ  and tm̂ ). It is 

possible to remove them and determine a random series of residuals (in case of additive 
decomposition)[3] 

 .ˆˆˆ
tttt smXZ   (22) 

If multiplicative relationships can be observed in the analysed series (the amplitude of 
seasonal variations or variance is proportional to the level of data), the conversion of (19) is 
used instead of (22) 

 .)ˆˆ(ˆ
tttt smXZ   (23) 

It is necessary to eliminate the trend and seasonality to match the stationary model [3]. 
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The examples of graphs illustrating the effects of decomposition for the analysed series 
are shown in Figures 5 and 6. 

 

Fig. 7. Seasonal variations of the time series PL. 

Figure 7 shows the monthly variations of values within the series in particular years, 
while Figure 8 shows the annual variations within the series. A considerable similarity of 
the values in individual months over the subsequent years can be observed in the graphs, 
taking into account the rising trend, which shows a strong upward tendency in the summer 
months. Strong annual cycles with a higher demand in the winter months are observed. It is 
worth emphasising the reduction in variance of the series in the final period where the 
annual cycles have a lower amplitude. 

 

Fig. 8. Seasonal graph of the time series PL. 

Summary  

The analysis carried out in this paper for the Polish power system monthly load time series 
confirms that there is a strong relationship between the similarity of patterns x and the 
similarity of patterns y paired with them and that it does not result from the random nature 
of the sample. Such a conclusion for the specific time series justifies the sense of 
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constructing and applying the forecasting models using the similarity of patterns of 
seasonal cycles. In the further work, it is planned to examine the similarity of patterns for 
the monthly load time series for power systems in other European countries.  

In a few articles [5, 9-12] authors demonstrate the effectiveness of a similarity-based 
approach on real-world data. Comparing with commonly used methods, e.g. ARIMA and 
exponential smoothing, the similarity-based models results achieve close errors on average 
[10]. For more regular time series with lower noise component and stable relationship 
between input and output patterns better performance of this kind of models is observed. 
The factors which decrease this stability are heteroscedasticity of time series and the 
nonlinear trend [10]. 
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