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Abstract. In the paper, based on interdisciplinary approaches to 
modeling, a mathematical model of a part of an opened extra-high voltage 
electrical grid, which key elements are two long power transmission lines 
with distributed constants is presented. Within this framework the analysis 
of transient processes in power transmission lines in a single-line 
arrangement is carried out. The results of transient processes are displayed 
by means of figures; they are under ongoing research.  

1 Introduction  

The main objective of electrical grids is transmission and distribution of electricity, 
provided that its quality indicators are preserved. It is quite clear that the latter cannot be 
maintained without a reliable information on progress of transient processes in electrical 
grids. One of the most effective approaches to obtaining the above-mentioned information 
is use of mathematical modeling apparatus, which is based on the fundamental laws of 
applied physics; in our case it concerns electrodynamics. The key elements of extra-high 
voltage electrical grids are long power transmission lines with distributed constants, which 
leads to formation of boundary and mixed problems in mathematical terms. This, in turn, 
causes the problem of searching for boundary conditions for the telegrapher's equation. 
Therefore in the present paper we offer a technique of effective searching for boundary 
conditions for the wave equation, which, as a result, makes it possible to study transient 
wave processes in electrical grids. 

2 Analysis of recent research  

There are many scientific papers devoted to analysis of transient processes in power 
systems. Let us consider some of them which are related to the current paper. 

In the article [1], the questions of mathematical models and macro-models of power 
transmission lines development are discussed. A discrete macro-model of a single-phase 
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power transmission line with the use of "black box" is developed. The model description, 
the order of its development and research findings are presented. 

In [2], mathematical models of two - and three-wire alternating-current transmission 
lines are developed, with the help of which different nature of transient processes is 
analysed using the software complex АТР-ЕМТР.  

It is obvious that not all these approaches to development of mathematical models of 
transient processes in long power transmission lines enable to take into account influence of 
other elements of a power system on processes in a line. Yet models including this feature 
are implemented in АТР-ЕМТР and MATLAB/Simulink software complexes, which does 
not always provide for more adequate result, especially when electromagnetic models of Ψ 
– A- type elements are used as models of power systems elements, and especially when the 
circular and field mathematical models of the latter are used [3, 4]. 

The aim of the paper is analysis of transient processes in the part of opened extra-high 
voltage electrical grid whose key elements are two long power transmission lines with 
distributed constants power systems.  

3 System description  

The present paper describes a model of an opened extra-high voltage electrical grid (Fig. 1). 
Power transmission lines are presented in the form of equivalent circuits with distributed 
constants. They combine power systems for parallel operation, which are presented by their 
own electromotive force, internal resistance and inductance. 

We study only symmetrical modes and this allows us to consider a three-phase 
symmetrical electrical grid in a single-line arrangement.  

Fig. 1. A calculated equivalent circuit of the studied part of an opened electrical grid. 

For the purposes of analysing transient processes in the part of the opened electrical 
grid, shown in Fig. 1, we suggest using a modified Hamilton-Ostrogradsky principle [5] 

The extended functionality of the mathematical operation for the studied system 
according to Hamilton-Ostrogradskii will be similar to that presented in [5-8]: 
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where S – action according to Hamilton-Ostrogradskii, L* – extended Lagrange function, 
Ll – linear density of the modified Lagrange function, I – energy functional. 
The extended Lagrange function is presented in [5]. 

Fig. 2. The equivalent circuit of power transmission lines connection with distributed constants. 
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L T P D    %        (2) 

where L* – extended Lagrange function, *~
Т  – kinetic coenergy, P* – potential energy, Φ* 

– energy dissipation, D* – energy of outside nonpotential forces [9]. 
Let us write down elements of the extended Lagrange function [5] 
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where LS1, LS2, LS3 – inductance of the systems 1, 2 and 3, respectively; RS1, RS2, RS3 – active 
resistance of the systems 1, 2 and 3, respectively; eS1, eS2, eS3 – electromotive force of the 
systems 1, 2 and 3; iS1, iS2, iS3 – current of the systems 1, 2 and 3, respectively; i(x,t) - 
current in the line; R0, g0, C0, L0 – distributed constants of the line; Φl3 – linear density of 
external energy dissipation; ΦlB – linear density of internal energy dissipation; Q(x,t) – the 
line charge; k – the line number. 

One can acquaint oneself with the method of the Similar equations are presented in [3, 
10, 11], for example. Therefore, to articlee synthetic, we suggest finished equations of the 
electromagnetic state of the object, Fig. 1. 
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where u1, u2, u3 – substation busbars voltage of the power systems 1, 2 and 3 respectively.  
Kirchhoff's Second Law for electrical circuits with distributed constants is used as 

boundary conditions for (9): 
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We will write down (9) and (13) in discrete space for the j-node of the line (using the 
concept of the central derivative): 

 
 

1
1 1

0 0 0 0 0 0 0 02

2
k k kk

jk k k k k k k k k kj j j
j j

k

u u udv
C L g L С R v g R u

dt
x

  


   
    
   

  (14) 

  01 ,
k

xu u x t  ;  ,
k

x lNu u x t  ; 
1

11u u ; 
2

31u u ; 
1

3Nu u ; 
2

2Nu u  

1 1
0 0

2

k k k
k k kj j j

jk

u u di
R i L

dtx

 
  


       (15) 

, 1,...,

k
kj
j

du
v j N

dt
  ; 1, 2k        (16) 

Having analyzed the equation (14), it can be seen that in order to find the voltage on the 
first and the last nodes of discretization, it is necessary to find the unknown voltages in the 

fictitious nodes 
k

u0  and 
k

Nu 1 . Let’s search for the voltage. 

Let’s note the equation of scleronomic constraint (see Fig. 2): 
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The next step is to differentiate (17) and (18) with respect to time: 
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Now, based on (15) and Fig. 2, we will write: 
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Substituting (10) from (19) to the first equation, and equations (20) and (21) from (19) 
to the second equation, we will obtain: 
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Substituting (14) to (24), which is written for the first discretization node for the first 
line and deriving the voltage from there, we will obtain: 
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Equations (22) and (23) against each other will produce: 

 1 1 1 211 1
0 11 11 1

01 1 1 1
0 0

1

2

N N
N N

N

u R x i uu u
R i

xL L x

 
     

   
    (26) 

Voltage in the fictitious node 
1

1Nu  results: 
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Due to space constraints, we will not provide findings for voltage in fictitious nodes of 
the second line, but will provide the finite expressions: 
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The current in the line can be found by discretizing (13) by the finite difference 
method, using the concept of the right derivative [5]: 
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The following system of differential equations is subject to joint integration: (10) – (12), 
(14), (16), (30) including (25), (27) – (29). 

4 Computer simulation findings  

A computer simulation was conducted to study transient processes during system switching 
in a steady-state mode [10, 12, 13]. 

The parameters of the equivalent circuit elements in Fig. 1 correspond to the parameters 
of the real part of 750 kV electrical grid. The line No. 1 is 282 km long, and the line No. 2 
is 476 km long. The parameters of the grid elements are as follows. 

The parameters of two long lines with distributed constants are as follows: eS1 = 
622 sin(ωt + 10.3º) kV, eS2 = 581 sin(ωt) kV, eS3 = 600 sin(ωt + 4.9º) kV, RS1 = 2.3 Om, 
RS2 = 2.5 Om, RS3 = 2.05 Om, LS1 = 0.15 H, LS2 = 0.145 H, LS3 = 0.165 H. The parameters 
of two long lines with distributed constants are as follows: R0 = 1.9∙10-5 Om/m, L0 = 
9.24∙10-7 H/m, С0 = 1.3166∙10-11 F/m, g0 = 3.25∙10-11 Sm/m.  

 

                         

Fig. 3. The spatial distribution of voltage 
(1) and current (2) in the line No. 1 at the 
time t = 0.003 s. 

Fig. 4. The spatial distribution of voltage 
(1) and current (2) in the line No. 2 at the 
time t = 0.003 s. 

Figures 3 and 4 show the spatial distribution of voltage and current functions in the lines 
No. 1 and No. 2 at the time t = 0.003 s, respectively. It can be observed that the 
distributions in the lines are to some extent similar. Differences in the distributions can be 
explained by the different lengths of these lines and parameters of the systems which they 
connect. 
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Fig. 5. Current at the midpoint of the line 
No. 1. 

Fig. 6. Voltage at the midpoint of the line 
No. 2. 

Fig. 5 and 6 show the current transient process at the midpoint of the line No. 1 and 
voltage at the midpoint of the line No. 2, respectively. It can be seen that the transient 
process is almost completed in 0.15s after the system start-up. 

 

Fig. 7. Temporal-spatial distribution of voltage functions in the line No. 1 at the time t [0; 0.04] s. 

 

Fig. 8. Temporal-spatial distribution of voltage functions in the line No. 1 at the time t [0; 0.04] s. 

Fig. 7 and 8 show voltage and current of the line No. 1 as a function of temporal-spatial 
coordinates. These figures are presented in 3D format. The high informative value of the 
latter should be noted; it lies in the fact that both spatial and temporal coordinates form a 
three-dimensional space. 

5 Conclusion 

1. Application of a modified integral variational principle of Hamilton-Ostrogradskiy 
allows to construct mathematical models of quite complex dynamical systems; in our 
particular case, a mathematical model of a part of the opened extra-high voltage 
electrical grid was constructed which consists of two long power transmission lines with 
distributed constants which combine power systems for parallel operation. 
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2. The mathematical model of the long power transmission line with distributed constants 
allows to analyze complex transient processes in such lines, which are almost 
impossible to take into account on the basis of a circular equivalent circuit of a long line 
scheme, because the partial differential equations help to describe physical processes 
taking into account environment continuity, in particular, to calculate propagation 
velocity of electromagnetic waves in long lines, to consider different wave processes, et 
caetera. 
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