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Abstract. The paper presents a mathematical model of an electrical load 
node consisting of a power transformer and synchronous motors which 
rotate vertical pumps using non-rigid transmission. Modified principle of 
Hamilton–Ostrogradsky served as the basis for construction of the model. 
Using the developed mathematical model of the node, electromechanical 
transients in the object are studied. The resultant system of dynamic state 
nonlinear differential equations is introduced in the normal Cauchy’s form. 
Computer simulation findings are displayed by means of figures; they are 
under ongoing analysis.  

1 Introduction  

Electrotechnical systems for generation, transmission and consumption of energy occupy an 
important place in the national economy. A wide range of relevant electrical devices are in 
one way or another involved in energy delivery to a consumer (transformers, power 
transmission, lines, etc.). Many generally introduce an inductive load, which maximizes 
voltage of electrical grids. Therefore, the issue of reactive power compensation is 
significant. 

There are many ways of reactive power compensation, starting with the use of 
compensating batteries and ending with a variety of semiconductor devices. Use of 
synchronous electric drives, especially of high and medium power, is an important and 
effective way of reactive energy compensation. In other words, it is advisable to replace 
asynchronous motors with synchronous driving motors. The present paper proposes to use 
a similar procedure with an electrical load node including synchronous pump drives [1-3]. 

2 Aim of the paper  

To construct a mathematical model of an electrical load node with non-rigid transmission 
pump synchronous and then analyse unsteady electro-mechanical processes in the above-
mentioned node. 
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To fulfill this objective, a generalized method which involves modifications of the 
integral variational Hamilton-Ostrogradsky principle was used by introducing an extended 
non-conservative Lagrange function [1], [4-8]. 

3 Mathematical model of the load node  

A mathematical model of the electrical load node (Fig. 1) is traditionally constructed 
starting with formation of the extended Lagrange function. For this purpose, we introduce 
generalized coordinates for the Holonomic system, Fig.1, Fig. 2: 
for a power transformer:  
q(1-6) = Q1A, Q1B, Q1C, Q2A, Q2B, Q2C – charges in windings; 
for a synchronous motors: 
q(7-12), k = QSA,k, QSB,k, QSC,k, QRD,k, QRQ,k, QRf,k  – charge in phase windings of a motor stator 
and rotor (D – damper (starting) winding along the d - axis, Q – along the q - axis, f – 
excitation winding); 
for a non-rigid transmission of the electric drives: 
q(13, 14), k = 1,k , 2,k – rotation angles of the motors rotor and pumps ; 
for a vertical pump: 
q15,k = Vk – liquid volume passing through each of the pumps. 
We will also determine the corresponding generalized velocities: 

(1 6) (7 12), (1 6) (7 12),, ,k kq q i i   & &  – current; 

(13,14), 1, 2,,k k kq  &  - rotation velocities; 15,k kq Q&  – pumping efficiency. 

   

Fig. 1. An electrical diagram of the load node. Fig. 2. Non-rigid transmission of the driving pump. 

Extended non-conservative Lagrangian looks as follows: 

* * * * *L T P D   %        (1) 

where:  L* – advanced non-conservative Lagrangian function,   T̃* – kinetic co-energy,  
P* – potential  energy, * – dissipation energy, D* – energy of external potential forces 
[1], [3-4], [9-10]. 

Then the elements of the Lagrange function (1) will look as follows: 
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where the indices denote: TM – power transformer, SM – synchronous motor, Т – non-rigid 
transmission, Р – vertical pump,  – flux linkage r – windings resistance of the transformer 
and the synchronous motor, u – supply voltage of the load node. 

After forming the non-conservative Lagrange function on this basis, we insert it into the 
action functionality according to Hamilton, then obtain a variation of the latter. 
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and taking into account the dependencies 
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where MEM – electromagnetic moment of the motor,  – liquid density, g – gravitational 
acceleration, H – pump lifting height physical lifting height of liquid lifting. 

The equality of the functional extremum (6) can be considered a mathematical model of 
the object, Fig. 1, Fig. 2. 

To reduce the volume of mathematical transformations [11] we will express the finite 
equation of the dynamic state of the electrical load node in matrix-vector form. It is also 
worth mentioning that the drive synchronous motors of the node are the salient pole, which 
allows for considering them in a linear version [1]. 
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We run the equations of stationary connections: 
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Following from that 
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The currents in the motor windings are determined from (14), (15) 
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The electromagnetic torque of a synchronous motor is calculated using [1]: 

 , 0, , , , ,3EM k k SB k SA k SA k SB kM p i i         (18) 

Analyzing the equations (8) – (10), it can be observed that in the latter there is an 
unknown function V – voltage of the load node. To find the unknown function, the first 
expression in (17) should be differentiated with respect to time, taking into account the first 
expression in (10) and the expression in (16) 
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Then we set the first expression in (16) with respect to time, taking into account the 
expressions in (10) and (14) and inserting them in the equation (19) 
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For the load node in Fig. 1. we will write Kirchhoff's First Law and differentiate it with 
respect to time, taking into account the initial conditions [1] 
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Finally, we will consistently solve the following equations (9), (20) and (21) with 
respect to V, and will obtain 
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It should be noted that the use of the pump equations (13) is complicated by the search 
for coefficients. For this reason, traditionally, a pump model and a pressure pipeline should 
be constructed based on the pressure characteristics Fig.3 [9-10], [12-14]. 

 

Fig.3. Schedules of the OB 2-87 pump and the pressure pipeline  
(D = 1200 mm, L = 1500 m, НГ = 0 and 4 m). 

Load moments of asynchronous motors for НГ=0 and 4 m are approximated by the 
exponential function 

2 1,856
0 2 2 4 2 2( ) 2,052 ; ( ) 3,958P PM M            (23) 

The differential equations (8) – (12) are subject to joint integration taking into account 
the expressions (17), (18), (22), (23). 
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4 Computer simulation findings 

A computer simulation was conducted as follows. A power transformer; PN = 630 kW, 
nN = 750 rot/min; UN = 6 kV; ufN = 42 V, p0 = 4 is supplied from an infinite power source. 
Two synchronous electric drives (the first and the second) applied the load; the drives 
rotated vertical pumps and a pressure pipeline (D = 1200 mm, L = 1500 m, НГ = 0 – the 
first pump and 4 m – the second) by means of long shafts, for example, water-intake 
facilities of thermal power plants. The shaft parameters are as follows: l0 = 6m, G = 8.11010 
Nm,  = 7850 kg/m3, d0 = 28 Sm. 

Two experiments were conducted. The first was to start the system of two motors 
excitation ufN = 30 V. A part of the second, the initial excitation was uf = 23 V with a 
further increase in voltage according to the linear law up to uf = 48 V during the time t  
[35; 50] s. The load moments of two pumps (the first and the second) are presented in 
Fig. 3 and expression (23). Also, a reduction gearbox with a gear ratio i = 1.28 was inserted 
into the transmission of both electric drives. Since the second electric drive is loaded to the 
maximum, the simulation findings are presented for it. 

                            

Fig. 4. Rotation speed of the pump. Fig. 5. Current in phase A of the second motor 
armature winding. 

Figures 4 and 5 show rotation speed and current in the stator winding of the motor. A in 
the stator winding of the second motor. At the time t = 28 s, excitation winding was 
inserted in excitation voltage ufN = 30V from a practically closed state. After entering the 
device into synchronization, the determined process takes place after t = 30 s, the settled 
process occurred after t = 30 s; the rotation frequency and current became stable. 

                           

Fig. 6. Electromagnetic moment of the second 
motor. 

Fig. 7. Elastic moment in the shaft of the 
second electric drive. 

Figures 6, 7 show the electromagnetic moment of the second motor and the elastic 
moment in the shaft of the second electrical drive. It is important to note the rather high 
value of the elastic moment up to 70 kNm, which is more than ten times higher than the 
nominal value of the motor. Such a high value of the moment generates fluctuations of the 
electromagnetic moment functions. 
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Fig. 8. Current in the rotor excitation winding of 
the second motor. 

Fig. 9. Rotor winding current along the D axis 
of the second motor. 

Figures 8 and 9 show two types of current in the rotor windings. The first current in the 
excitation winding of the machine and the second - in the damper (starting) winding along 
the d-axis. Analyzing the figures, it can be observed that, as the rotation velocity increases, 
the current frequency in both windings decreases, and after the machine is synchronized, 
the excitation current takes an established value and damping types of current (along both 
the axes) become equal to zero. 

                                       

Fig. 10. Voltage in phase A of the load node. Fig. 11. Current in phase A of the secondary 
winding of the power transformer. 

Figures 10 and 11 show the phase voltage and current in phase A of the secondary 
winding of the power transformer. It should be noted that the voltage of the secondary 
winding of the power transformer is the voltage of the electrical load node. The two Figures 
also show significant fluctuations, the nature of which is connected to the fluctuations in the 
non-rigid transmission of the electric drives. In other words, an obvious example of the 
electromechanical energy conversion throughout the load node can be observed here [11], 
[15-17]. 

                                      

Fig. 12. Voltage in phase A of the secondary 
transformer winding (2nd experiment). 

Fig. 13. Current in phase A of the secondary 
power transformer winding (2nd 
experiment). 

Figures 12 and 13 show the phase voltage of the load unit and current in phase A of the 
power transformer for the second experiment. Upon reaching the steady state in the system, 
during t = 35 s, the voltage increases up to t = 50 s according to the linear law. The first 
figure shows the voltage amplitude increase from U = 4700 V to U = 5500 V. At the 
nominal value of the load node U = 4900 V. In other words, the phenomenon of 
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overcompensation can be observed, which is also undesirable in electrical load nodes. 
Figure 13 is an example of this phenomenon. During the steady process, current increases 
significantly more than 1.5 times (see Fig. 11). Moreover, this current is of a capacitive 
nature. 

5 Conclusions 

1. Application of interdisciplinary approaches to complex modeling of dynamic systems in 
various physical sciences greatly extends research capabilities. This is especially 
relevant to applied problems of electro-mechanics, when the basics of electrical 
engineering, applied mechanics, hydrodynamics and other fields are often involved in 
mathematical models of objects.  

2. An important point during mathematical modeling of electrical load nodes is formation 
of a methodology for calculating voltage of such nodes. In fact, the theory of ordinary 
differential equations, applicable to this procedure, makes a substantial contribution to 
solving of this problem. 

3. Use of synchronous electric drives as elements of electrical load nodes helps to solve 
the problem of reactive power compensation effectively, on the one hand, and to 
provide fixed mechanical characteristics of an electric drive, on the other. 

4. During asynchronous acceleration of synchronous electric drives with non-rigid 
transmission the problem of increased elastic moments in drive shafts occurs. In fact, 
use of mathematical modeling allows to recreate the oscillating nature of these moments 
and therefore to create preconditions for effective reduction of elastic moments in non-
rigid transmission of synchronous electric drives. 

References 

1. A. Chaban, Principle Gamіltona-Ostrogradskogo in elektromehanіchnih systems, 
(Soroki, Lviv 2015) 

2. A. Szafraniec, Modelowanie matematyczne procesów oscylacyjnych w napędzie 
elektrohydraulicznym o podatnej transmisji ruchu, Przegląd Elektrotechniczny, 12, 
167-171, (2017) 

3. A. Czaban, M. Lis, Wykorzystanie sztucznej sieci neuronowej do wyznaczania prądu 
generatora w układzie napędowym silnik PMSM – generator prądu stałego, Przegląd 
Elektrotechniczny, 6, 272-274, (2014) 

4. R. Ortega, A. Loria, P.J. Nicklasson, H. Sira-Ramirez, Passivity-Beast Control of 
Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. 
(Springer Verlag, London 1998) 

5. D. Zhang, W. Shi, B. Chen, X. Guan, Unsteady flow analisys and experimental 
investigation of axial-flow pump, Journal of Hydrodynamics, 22(1), 35-43, (2010) 

6. M. Lis, Modelowanie matematyczne procesów nieustalonych w elektrycznych układach 
napędowych o złożonej transmisji ruchu, (Wydawnictwo Politechniki 
Częstochowskiej, Częstochowa 2013) 

7. P. Pukach, Investigation of Bending Vibrations in Voigt–Kelvin Bars with Regard for 
Nonlinear Resistance Forces, Journal of Mathematical Sciences, 215, 71-78, (2016) 

8. A. Szafraniec, Mathematical Model of Asynchronous Pump Drive and Power 
Transformer Drive System with Complex Motion Transmission, Control of Power 
Systems 13th International Scientific Conference CPS 2018, Tatranské Matliare - 
Tatranská Lomnica, (2018) 

 , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /2019840201584
PE 2018

2015 (

8



9. Z. Łukasik, A. Czaban, A. Szafraniec, V. Żuk, The mathematical model of the drive 
system with asynchronous motor and vertical pump, Przegląd Elektrotechniczny, 1 
133-138 (2018) 

10. Z. Łukasik, A. Czaban, A. Szafraniec, Mathematical model of asynchronous pump 
drive with distributed mechanical parameters, Przegląd Elektrotechniczny, 6, 155-159, 
(2018) 

11. M. Lis, A. Szafraniec, Model matematyczny synchronicznego układu pompowego o 
podatnej transmisji ruchu, Maszyny Elektryczne - Zeszyty Problemowe, 118, 165-170, 
(2018) 

12. T. Zawilak, Silnik synchroniczny wzbudzany magnesami trwałymi w napędzie pompy 
dużej mocy, Maszyny Elektryczne. Zeszyty Problemowe, 106, 247-251, (2015) 

13. W. Jędral, K. Karaśkiewicz, J. Szymczyk, Badanie nieustalonych stanów pracy i 
charakterystyk zupełnych pomp wirowych, Instal, 11, 21-24, (2013) 

14. W. Mandrus, W. Żuk, Hydraulika, napędy hydrauliczne i pneumatyczne maszyn 
wojskowych, (АСВ, Lwów 2013) 

15. T. Glinka, Dynamika silnika indukcyjnego i synchronicznego po wyłączeniu i 
ponownym załączeniu napięcia, Maszyny Elektryczne - Zeszyty Problemowe, 1, 1-14, 
(2017) 

16. T. Zawilak, J. Zawilak, Synchronous motors excited by permanent magnets in high 
power drives, Przegląd Elektrotechniczny, 2, 173-176, (2017) 

17. A. Popenda, Mathematical Modelling of Real Transmission Shafts and Mechanical 
Connections with Clearances, Przegląd Elektrotechniczny 1, 189-192 (2017) 

 , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /2019840201584
PE 2018

2015 (

9


