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Abstract. Climate system is complicated and highly nonlinear, and a certain condition occurs over a small 
region could potentially propagate through space to affect remote regions. However, diagnosing such 
remote relationships is challenging due to the non-linearity of the climate system itself. In this study, we 
analyzed the relationship between Pacific Sea Surface Temperatures (SST) anomaly that indicates El Niño 
dynamics and Amazon basin local precipitation. We overcame the traditional difficulty of establishing 
reliable climate relationship with a simple linear assumption, by employing the statistical framework of 
mutual information. We effectively revealed a strong relationship between El Niño's and tropical 
precipitation as well as the spatial distribution of such relationship. 

1 INTRODUCTION 

As one of the most important and widely-acknowledged 
indicators of earth system climate variability, El Niño 
describes the Pacific basin-wide abnormal increase in 
both Sea Surface Temperatures (SST) in the central and 
eastern equatorial Pacific Ocean and in sea level and 
atmospheric pressure in the western Pacific (Southern 
Oscillation) [1]. It is also referred to as the phenomenon 
of El Niño–Southern Oscillation (ENSO) in the literature 
with the atmosphere and ocean collaborating together. El 
Niño in this context specifically ties to the warm phase of 
ENSO. ENSO exists because of the fact that the tropical 
Pacific features equatorward blowing trade winds under 
Coriolis force, accumulates an enormous volume of water 
above 28°C toward the Maritime Continent [2], which 
can be represented by tropical SST anomaly, and its 
temporal and spatial structures [3]. 

Although the phenomena of El Niño itself occurs over 
a relatively small region of tropical ocean, the impacts of 
El Niño can reach out to many remote regions of land 
surface and oceans due to the enormous changes in ocean 
and atmospheric circulations within and outside the 
tropical Pacific. With that, El Nino causes environmental 
disruptions such as devastating floods/droughts, coral 
bleaching events, destructive cyclone, and the associated 
abnormal warming can also affect natural ecosystem 
carbon cycle and greenhouse emission [3,4]. For instance, 
the 1997/1998 El Niño cost tens of thousands of human 
casualties worldwide and economic losses of tens of 
billions in U.S. dollars [5]. The impacts of El Niño could 
be even more dramatic during extreme El Niño events, 
which e.g., lead to significant social, economic, and 
environmental impacts [4]. El Niño can also cause the 
extreme rainfall reduction changes over land surface. For 

example, a long-term El Niño SST abnormity may give 
rise to rainfall reductions in Amazon basin [6]. In this 
study, we focused on analyzing the impact of the El Niño 
dynamics on Amazon basin local precipitation. One of 
the critical challenges of this study is to overcome the 
fact that previous studies drew conclusion of how El 
Niño affects regional climate based on the assumption of 
linear earth system coupling. We addressed this potential 
problem by employing a non-linear time series analysis 
approach that originally developed in information theory 
and applied to signal processing, called mutual 
information. Therefore, our object was to identify 
potentially hidden non-linear relationship and also spatial 
heterogeneity between El Niño dynamics and Amazon 
basin local precipitation, in contrast to a simple linear 
reconstruction of such relationship. 

2 Methodology 

2.1 Data  

In this study, we employed Sea Surface Temperature 
(SST) anomaly over the region of longitude W-170 to -
120, and latitude -5 to 5 (so-called Nino3.4 index) to 
represent El Nino dynamics. Data ranges from 1958 to 
2013 at a monthly resolution [7; Figure 1 upper panel]. 
We used precipitation data from Climate Research Unit 
(CRU) over the Amazon basin at 0.5x0.5 spatial 
resolution, and a monthly temporal resolution [8; Figure 
1 lower panels]. Overall, Nino 3.4 index is a stationary 
time series across time but also includes several strong El 
Nino years, for instance, 1998 and 2009. Amazon basin 
receives a large amount of precipitation annually, in 
general. Spatially, there is also an apparent precipitation 
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gradient from northwest to southeast region, along which 
precipitation rate declines from over 4000 mm /yr to 
2000 mm / yr. However, variability of rainfall does not 
show apparent spatial trend, ranging from 50 to 200 
mm/yr. 

2.2 Model 

Relationship between to climate variables can be 
established using linear correlation based on the 
assumption of linear relationship between those variables. 
In statistics, the Pearson correlation coefficient is a 
measure of the linear correlation between any two 
variables X and Y. It has a value between +1 and -1, 
where 1 is perfect positive correlation, 0 is no correlation, 
and -1 is perfect negative correlation. We first calculate 
the Pearson correlation between Nino3.4 time series and 
Amazon precipitation with: 
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Where Xi, i=[1,2...,672] denotes Nino3.4 Yi, i = 
[1,2,...,672] represents precipitation at each 0.5x0.5 
resolution gridcell across the Amazon basin. 
 

 

Fig. 1. Nino3.4 monthly time series from 1958 to 2013 (upper 
panel), Amazon basin mean annual precipitation (MAP) at 
0.5x0.5 resolution (bottom left), and Amazon basin 
precipitation variance (bottom right). 
 

We further relaxed the linear relationship assumption, 
which was probably not true for the complex climate 
dynamics and employed probability theory and 
information theory to use the mutual information (MI) of 
two random variables as a measure of the non-linear 
relationship. More specifically, it quantifies the "amount 
of information" (in units such as Shannon, more 
commonly called bits) obtained about one random 
variable, through the other random variable. The concept 
of mutual information is intricately linked to that of 
entropy of a random variable, a fundamental notion in 
information theory, which defines the "amount of 
information" held in a random variable. Here, we 
calculated the mutual information between Nino3.4 and 
Amazon precipitation to see their non-linear relationship. 
Let H(X) be the Shannon entropy of random variable 
Amazon precipitation and H(X|Y) be the conditional 

entropy of Amazon precipitation given Nino3.4. The 
mutual information I(X, Y) is obtained as 
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where p(x) represents the probability density function 
(PDF) of random variable X, p(y) represents the PDF of 
random variable Y and p(x, y) represents the joint PDF of 
random variable X and Y. 

In our non-linear approach, it is critical to check the 
statistical significance of the mutual information, which 
means whether or not an identified relationship is 
significantly stronger than two independent time series. 
Here we used the method of shuffled surrogates. To 
estimate the shuffled mutual information, the values of X 
and Y were shuffled randomly aiming to remove time 
correlations between them and the new mutual 
information was computed through the shuffled time 
series and used as statistical threshold of our previous 
calculated mutual information. 

3 RESULTS 

3.1 Linear coupling pattern analysis 

By assuming the system coupling between El Niño and 
Amazon local precipitation to be linear, we could 
reconstruct their relationship with the simple Pearson 
correlation coefficient. As shown in the Figure 2 left 
panel, we found that most of northern part of Amazon 
basin was negatively correlated with El Niño, while most 
of the southern part was positively related to El Niño. 
Moreover, neither showed a strong and significant 
correlation (absolute value of correlation < 0.3). We 
expected that local precipitation should not be well 
related to remote El Niño dynamics due to spatial 
heterogeneity and local environmental conditions. 
Therefore, we also eliminated the spatial effect of 
regional heterogeneity, by integrating the precipitation 
over the whole Amazon basin and regressed with Nino3.4 
(Figure 2 right panel). We found that the regional 
aggregated precipitation was negatively, but also weakly, 
correlated with El Niño dynamics. 

 
Fig. 2. Pearson correlation between Amazon basin local 
precipitation and remote Nino3.4 signal (left panel), probability 
density distributions and linear regression relationship of 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/2019 019)0
201

E3S 96 960
ICEPP 8

30 1 30

2



 

Nino3.4 versus average precipitation over the whole Amazon 
basin (right panel). 
 

3.2 Non-linear coupling pattern analysis  

We hypothesized that the atmospheric system was a 
highly non-linear system so that El Niño dynamics and 
remote local precipitation over Amazon basin should be 
non-linearly “correlated”. Theoretically, mutual 
information (MI) between El Niño and the Amazon 
precipitation should be a better indicator of non-linear 
coupling than Pearson correlation. The Figure 3 
illustrated the normalized mutual information that above 
the statistically significant threshold. A negative value 
(magenta) indicated no clear relationship, while a positive 
value (green) implied a strong relationship. Spatially, it 
showed an interesting spatial pattern that the heavy 
rainfall regime was less impacted by El Niño (Figure 1 
and 3), while the relatively drier regions tended to have a 
strong non-linear coupling with El Niño dynamics. 

3.3 Limitation and future work  

Although we obtained a significant nonlinear relationship 
between Nino3.4 and Amazon basin precipitation under a 
nonlinear assumption that was more appropriate for 
climate system, mutual information limited our ability to 
retrieve the direction of this relationship (positive or 
negative relationship for example). This study was also 
limited to the temporal coverage of the most recent few 
decades, while our future study will continue to use non-
linear metrics to explore the coupling patterns between 
Amazon precipitation and climate anomaly under the 
future climate conditions with fully coupled earth system 
models. 
 

 
Fig. 3. Mutual information (MI: indicator of non-linear 
coupling) between Amazon basin local precipitation and remote 
Nino3.4 signal. MI is showed as values above its significant 

threshold, positive means strong coupling, and negative means 
no coupling. 
Climate anomaly, such as El Niño, causes dramatic 
changes in atmospheric, oceanic and land surface changes 
including extreme regional weather. In this study, we 
focused on analyzing the relationship between the El 
Niño dynamics on Amazon basin local precipitation. We 
used two contrast methods to analyze the relationship 
with linear and non-linear assumption of climate system. 
The results showed that the linear relationship between El 
Niño and Amazon local precipitation was weak. However, 
our mutual information analysis successfully identified 
strong relationship between El Niño and Amazon local 
precipitation, which will potentially have a great 
implication on our understanding of El Niño dynamics 
and its potential remote impacts. 
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