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Abstract. This paper describes the analyses of the nonlinear vibrations and 

dynamic stability of an airfoil on hereditary-deformable suspensions. The 

model is based on two-degree-of-freedom structure in geometrically 

nonlinear statements. It provides justification for the choice of the weakly 

singular Abelian type kernel, with rheological parameters. To solve 

problems of viscoelastic system with weakly singular kernels of relaxation, 

a numerical method has been used, based on quadrature formulae. With a 

combination of the Galerkin and the presented method, problems of 

nonlinear vibrations and dynamic stability in viscoelastic two-degree-of-

freedom structure have been solved. A comparison of the results obtained 

via this method is also presented. In all problems, the convergence of the 

Galerkin method has been investigated. The implications of material 

viscoelasticity on vibration and dynamic stability are presented 

graphically.  

1. Introduction 

At recent years, the mechanics of composite materials has great impact to the development 

of the aerospace industry. There are many problems such as deformation, durability, 

vibrations, and dynamic stability of the structures made from composite materials. The 

study of these problems in context of composite materials helps to solve many problems in 

the aerospace industry such as weight, strength, and reliability in the design and 

engineering. Interest in problems of deformation, durability, vibrations, and dynamic 

stability of structures made of composite material is prompted by the fact that they are the 

main load-bearing elements in, etc. Strong demand for reliable elements of the structure 

made from advanced composite materials in the engineering requires better mathematical 

and mechanical models of viscoelastic systems. Therefore, the development of efficient 

algorithms for viscoelastic system to solve nonlinear problems of vibration and dynamic 

stability is become one of priorities of the mechanics of composite materials. Many 

composite material constants are distinct viscoelastic properties [1], [2], [3], [4], [5]. 

Viscoelastic systems made of composite materials having different structure have been 

described previously [8], [15].  
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Various studies have been devoted to the solution of elastic structural (isotropic cases 

and orthotropic cases) problems [1], [2], [3], [4]. Even if the problems were solved in the 

viscoelastic formulation, in many cases the viscoelastic characteristics of the material were 

only taken into account in a restricted context [6], [7], and [8]. Actually, mathematical 

models of problems of viscoelastic systems based on these assumptions cannot describe 

real processes in constructions and the influence of dynamic loadings [3], [4]. The lack of 

assumptions leads to incorrect approximation of relaxation and creep processes in the initial 

stage of deformation. The choice of assumptions should not be casually undertaken. In 

cases where a similar problem is solved in a linear statement, the decision is reduced to the 

application of various integrated transformations, e.g. Laplace, Laplace-Carson, etc.[7], [9], 

[10] and [8]. If they are solved in a nonlinear statement, it can be obtained as the solution of 

a system of integro-differential equations, where, by way of differentiation, it may be 

reduced to the solution of ordinary differential equations, which in most cases are solved by 

the method of Runge-Kutta or finite element method [5], [6], [7], and [10]. At present, the 

existing methods do not allow the resolution of problems involving weakly singular kernels 

of the Koltunov, Rzhanitsyn, Abel and Rabotnov types, among others [2] and [3]. 

According to the numerical method [12], [13], [14] and [15] developed by F. Badalov 

on the basis of quadrature rules, it is now possible to solve the system of nonlinear integro-

differential equations with weakly singular kernels of the Abel and other types. This 

method provides results of a reasonably high accuracy and is universal. It enables the 

resolution of a wide class of dynamic problems of the theory of viscoelasticity and is 

economical from the point of view of calculation time [13], [14], [15]. 

The purpose of this work is the study of nonlinear vibrations and the dynamic stability 

of the airfoil with viscoelastic suspensions. At present time, the existing methods do not 

allow solve of problems involving weakly singular kernels including [2] and [3]. 

According to the numerical method [14] and [15] based on quadrature formulas; it is 

possible to solve the system of nonlinear integro-differential equations with weakly singular 

kernels. This method provides a high accuracy of results. 

2. Structural model 

The constitutive relation between stress and strain on suspensions of the airfoil is assumed 

to have the form  

  * 3

1
1 R E E                                 (1) 

and the airfoil structure has cubic nonlinearity from [11-19] that is, 

  * 3

1
1 ,

x
R G G z         , where 

1
E  and 

1
G  are physical nonlinearity coefficients, 

which are less than zero 
1 1

( 0, 0)E G   for soft materials and greater than zero 

1 1
( 0, 0)E G   for rigid materials. 

 Assume that a rheological property of an airfoil structure is governed under cubic 

nonlinearity law of the viscoelasticity [15]. Then according to the variation principle of 

hereditary theory of viscoelasticity [2 ,3] kinetic and potential energy describes by next 

expressions: 
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K c q c r c qr        (2) 

   3 * 3 3 * 3
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P a q q q R q q a r r r R r r              (3) 

where 1,   are parameters of nonlinearity, ijc  is coefficient of inertia and ija  is coefficient 

of rigidity and 11c m , 
2 2

12 21 22, ( )c c mb c m r b     . 
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Substituting equations (2) and (3) into Lagrange equation 0
i i

L d L

U dt U

 
 

 
, where 

L P T   , 
1 2( ), ( )U q t U r t   yields  

* 3(1 )( ) 0.MU K R U U          (4) 

The initial conditions are  

0 0(0) , )  (0 .U U U U       (5) 

 The equation (4) is nonlinear integro-differential equation of motion of airfoil structure, 

where b is coupling term for bending-torsion vibration of airfoil model. When axis of 

rigidity and axis of the centre of gravity are in one line, b=0 and system (4) is separated into 

two independent equations. First equation is describes vertical vibrations, and second 

equation is describes torsional motion of an airfoil model of wing. Because such 

constructive placement of axis is difficult, vibration of the system is considered as coupled 

bending-torsion vibration of an airfoil model. 

In the equation (4) other terms describes in following matrixes  ( )
( )

q t
U

r t
  is matrix of 

generalized displacements, 11 12

21 22

c c
M

c c
   
 

 is mass matrix, and 11

22

0
0

a
K

a
   
 

 is rigidity 

matrix. 

 System of nonlinear weak singular equations (4) with initial conditions (5) describes 

mathematical model of the classical vibration problem. System of equation (4) is general, 

which can be divided into 2 particular vibration problems. Then one can have two degree of 

freedom vibration problem, mentioned above. When 
* 0, 0R   , system of equations is 

linear problem of vibration of the elastic airfoil model of wing [1, 2], and at * 0R   will 

have problem of the vibration of airfoil model of wing from nonlinear elastic material. In 

the linear case, when 
1 0    exact solution of the equations (4) at initial conditions (5) 

is obtained by considering: 
11 1 12 21, 0c c c c   , and 

22 2c c . 

 In the nonlinear case, the task is become more complex and required to apply 

numerical methods. Therefore, in the equations (4) are setting dimensionless terms, such as 
2 2

1 2
1 2 2

1

1 , , , , ,
c cb b

bh u w t t
r r m c b

    
   

         
   

. 

After introducing above described terms into equation (4), it is become 
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(6) 

 Exact solution of system of the weak singular integro-differential equations are has 

mathematical difficulties. For a complete solution of integro-differential equations (IDE) 

(6), it is necessary to add boundary and initial conditions. Initial conditions given by the 

following expressions: 

0 0 0 0 0 0| , | 0, | , | 0.t t t tW W W U U U           (7) 

 Therefore, for solution of equations (6) is used a method of elimination of weak 

singularities of integro-differential equations developed by Badalov [15].  
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3. Discrete model  

The exact solution of system weak-singular IDE (6) in partial derivative represents 

significant mathematical difficulties. The approximate solution of equation (6), according 

to the method of elimination of weak-singularity features of a integral and IDE [15], is 

based on the linear recurrent system of the algebraic equations: 

1
3 3
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

 
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(8) 

where  3 3

1 1 2
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 Solution of system linear recurrent algebraic equations (8) allows obtain numerical 

values of functions W, U for 1, ; 1,2, .i N n     

4. Numerical example  

In this section is represented a numerical validation of the problem in Figure 1 by the 

integration method. The solution of the excitation of the problem is described by equation 

(7). This equation is used for numerical calculation of a dynamic responses of the 

viscoelastic suspensions of the airfoil. The dynamic response of the system is investigating 

under free vibration. In detail, the effects of the nonlinearity and viscosity parameters of the 

material are investigated, and analyzed after the numerical implementation of the equation 

(7). For the small influence, the relaxation   is fixed in all experiments as constant based 

on the previous works. In the experiments were explored the influence the singularity and 

viscosity parameters. Nonlinearities are imposed by giving the nonlinearity parameter. 

4.1. Free vibration of the airfoil with viscoelastic suspensions  

Before investigating the vibratory behavior is formulated an initial conditions and 

suspension material constants  
2

0.9; / 0.44; 0.0; 0.0; 0.0; 0.1r b t           

For realistic study Goland's cantilever wing model was selected to simulate the dynamic 

response and stability analysis. It has following parameters: 

 Wing half span 20l   ft 

 Wing chord 6c   ft 

 Mass 0.746m   slugs per ft 

 Radius of gyration = 25% of chord 

 Span wise elastic axis = 33% of chord 

 Center of gravity = 43% of chord 

 Bending rigidity 
6 223.65 10EI lb ft    

 Torsion rigidity 
6 22.39 10GJ lb ft   
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 Main aim is to explore the influence of material properties to the free vibrated motion 

of the airfoil. Therefore, the first analyses and compares perfect elastic linear and nonlinear 

( 0.2   ) (Figure 1) with linear and nonlinear ( 0.2   ) viscoelastic motion of the 

suspensions (Figure 2). When the viscosity parameter is varied by 0, 0.1, and 0.2, the 

vibratory behaviors of the linear and nonlinear cases are depicted by Figures 1 and 2. 

Calculation is provided for both cases, for the elastic and viscoelastic models with different 

structural nonlinearity parameters. 

 

Fig.1. Time history of the perfect elastic wing model - 0   

 If in Figures 1 and 2 was analysed the free vibration at perfect elastic conditions with 

out any affects of structural conditions. This graph demonstrated perfect pitching and 

plunging displacements for  
2

0.1; / 0.44; 0.0; 0.0; 0.0; 0.1.r b t           As 

analogous time history of the perfect elastic pitching and plunging displacements for 

Goland wing model with linear and nonlinear viscoelastic suspensions are demonstrated in 

Fig.4 and Fig.5, which illustrate different rate of amplitude and frequency for plunging and 

pitching compare to the Fig. 1-2. Coupling motion has influence into frequency of pitching 

motion, which is observed in Fig. 5. 

 

Fig. 2. Time history of the perfect elastic wing model - 0.2   
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Fig. 3. Time history of the linear elastic Goland wing model- 0   

 

Fig. 4. Time history of the linear elastic Goland wing model- 0.2   

 

Fig.5. Comparison of the pitching motions for the elastic suspension 
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 The results show (see Figures 1-2) that viscosity parameter   affects to the amplitude 

and excitation period. With the given parameter, the vibratory curve of the shows stiffening 

effect in Figures 1 and 3. However, as the viscosity parameter (see Figure 2 and Figure 4) 

increases, the displacement in both cases goes down faster. In other words, the free 

vibration with much viscosity parameter is damping the vibratory behavior faster. 

 

Fig. 6. Uncoupled and Coupling motion history for Goland wing model 

 

Fig. 7. Time history of the pitching motion at different suspension ratios 

5. Conclusion 

Application of the variation method to viscoelastic problems is demonstrated in this work 

as an incremental integration in time.  

 The constitutive relation (stress-strain) was used in a form of a hereditary law with 

relaxation kernel represented by an Abelian type weak- singularity. 

 The general procedure of solution of the nonlinear integro-differential equations for an 

airfoil with hereditary-deformable suspensions is formulated and analyzed. The analysis is 

given for the general vibratory problem of the airfoil. 
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