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Abstract. This paper combines a review on the importance of dust composition with respect to numerous 
atmospheric impacts with field measurements performed in African and Central Asian dust. In the review 
part, the most important dust components and their relevance for certain processes are outlined. Typical 
compositions from bulk measurements for African and Asian dust are presented. Generally the local 
variation in composition can be higher than the differences between Asian and African dust and their 
according specific sources. While similar general results are available from individual particle analyses, 
these investigations add important information on mixing state and homogeneity of composition. 
Atmospheric aging of mineral dust is observed globally, depending on transport distances from the sources 
and transport environment. As an illustration, comparative field measurements of African and Asian dust 
deposition are presented.  

1 Introduction 
Mineral dust undoubtedly is one of the most important 
aerosol types in the Earth system [1]. Dust derived from 
soils is among the largest contributors to the global 
aerosol burden [2]. It dominates climate effects over 
considerable areas of the world [3-5].  

Most of the impacts of mineral dust depend on its 
microphysical and composition properties [6, 7]. Dust 
changes the global energy balance by its direct radiative 
forcing. With respect to the solar forcing in particular 
iron oxides play a dominant role for radiation absorption 
[8, 9]. The thermal radiation budget is considerably 
impacted by dust mineralogy [10, 11]. Dust modifies 
cloud cycles macroscopically by changing atmospheric 
stability conditions [12], and microscopically by 
modifying cloud condensation and ice nucleating 
processes [13, 14], thus affecting the global water cycle 
and indirectly climate. Apparently, the latter effect also 
is depending on dust composition and mixing state [15, 
16]. In particular for ice activation in clouds, the 
composition plays a key role [17-19].  

Beyond atmospheric aspects, dust composition 
impacts the terrestrial and the ocean biosphere. It 
supplies missing nutrients to tropical and extra-tropical 
ecosystems [20, 21] as well as to ocean surface waters, 
typically depleted in iron and/or phosphorus [22-24]. 
The bioavailability of these nutrients depends highly on 
mineralogical composition [25, 26]. Via the biosphere, 
again the climate can be influenced indirectly [27]. On 
the other side, also adverse health effects are reported, 
e.g., potentially by transport of microbiomes [28] or
toxic substances [29]. 

Mineral dust in the atmosphere is also subject to 
chemical reactions, acts as catalyser and provides surface 
for heterogeneous reactions. For example, the carbonate 
compounds in dust can lower considerably the 
atmospheric acidity by reacting with nitric and sulfuric 
acid [30, 31]. Metal oxide compounds in conjunction 
with photochemical processes can lead to catalytic ozone 
decomposition [32] and modify NO cycles [33]. A 
variety of organic and inorganic reaction can take place 
on the dust surface [34], while reaction efficiency is 
apparently affected by dust composition [35]. 

Finally, also humankind’s daily life is affected by 
dust composition. Health effects strongly depend on 
composition parameters [36], but also solar energy yield 
is affected by mineral-specific dust absorption [37, 38], 
and aircraft operations [39] may be hampered by 
abrasion or dust melting. 

Therefore in the present paper, a synthesis of dust 
composition as encountered in various regions around 
the globe is given. In addition to bulk composition 
properties, a second section deals with individual particle 
properties, as particle to particle variation may have a 
considerable impact on dust behavior. 

2 Dust composition 

2.1 General aspects 

Atmospheric mineral dust is emitted from surfaces of the 
Earth by different processes, mainly saltation-
sandblasting and aggregate fragmentation [40, 41]. 
Therefore, it could be generally composed of any 
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available mineral (i.e. more than a 1,000). However, 
many of them are rare or confined to certain 
geographical areas with specific geology. Moreover, 
sediment composition and dust composition are not 
identical becausefractionation occurs during emission. 
While the connection between sediment composition and 
dust composition in not well-characterized, it is for 
example known that clay minerals are enriched 
relatively, and quartz and feldspars are depleted [42]. As 
result, usually only a much lower amount of mineral 
groups – around 20 – is identified in atmospheric dust 
[43, 44]. 

Different minerals and mineral groups are relevant 
for different atmospheric processes, so it makes sense to 
classify the dust accordingly.  
1. Clay minerals: clay minerals usually contribute the 
majority of the atmospheric dust mass and number. 
Therefore, they are among the most relevant for optical 
aspects like short-wave radiation scattering and long-
wave absorption and emission, but less so for short-wave 
absorption due to their low imaginary part of the 
refractive index [8, 10]. Most common clay minerals / 
mineral groups in atmospheric dust are kaolinite, illite, 
chlorite, smectites, and micas. 
2. Iron oxides and oxi-hydroxides: they are most 
important for light absorption because their imaginary 
part of the refractive index is order(s) of magnitude 
higher than that of clay minerals [8, 45]. They can exist 
as separate grains, but also mixed with clay mineral 
aggregates [46-48]. They are most commonly a minor or 
trace compound of dust by mass. Most common mineral 
species are hematite and goethite for natural sources. 
3. Carbonates: they are the most reactive particles among 
the dust and can readily interact with acids like sulfuric 
or nitric acid [49, 50]. By this pathway, they may 
strongly increase their hygrosopicity. The carbonate 
contribution is variable and strongly depends on the 
source. Most common carbonates are calcite and 
dolomite. 
4. Feldspars: feldspars have come recently into focus, as 
some minerals of the feldspar class are efficient ice 
nuclei and can therefore influence cloud processes [19, 
51]. Feldspars usually only contribute a minor fraction to 
the total dust. Most common minerals in this group are 
albite, orthoclase, microcline and the variable 
plagioclases. 
5. Catalytic substances: some compounds in dust can act 
catalytically for chemical or photochemical processes, 
mainly iron and titanium oxides. As for the iron oxides, 
titanium oxides are usually present only in traces. Most 
common titanium mineral are rutile / anatase (usually not 
distinguished) and ilmenite. 
6. Nutrients: for marine ecosystems usually iron and 
phosphorus compounds are of interest [52], whereas for 
terrestrial ones phosphorus, calcium and magnesium are 
discussed [53, 54]. Which compound can act as efficient 
nutrient, depends on the ecosystem state [22]. Common 
phosphate compounds are the apatites, magnesium can 
be present in dolomite or in different clay minerals.  
7. Other substances like directly toxic or abrasive 
materials: the most abrasive and still major or minor 
compound of dust would be quartz. However, due to its 

large particle size, it is usually not transported far in this 
potentially abrasive size range [55]. Other substances 
reported for toxicity are for example copper compounds 
[29]. Human health aspects are frequently related to 
quartz and asbestos, for different reasons [56], but also 
toxic substances in natural dust such as chromium and 
other heavy metals are reported [57, 58]. However, most 
of the health-related investigations are focused on 
individual substances, so no generalizations can be 
derived here. 

2.2 Dust bulk composition and sources 

The bulk composition of mineral dusts (and their source 
sediments) can be given as a mineralogical composition 
mainly determined by X-ray diffractometry (XRD) or as 
a chemical composition determined by vastly different 
analytical methods (e.g., AAS, ICP-MS, XRF). 

XRD analyses revealed that the mineralogical bulk 
composition of mineral dust is generally dominated by 
silicates, carbonates, and iron and titanium oxides [44, 
59]. The most important silicate phases are quartz, 
feldspar (plagioclase, K-feldspar), and different 
phyllosilicates (mica, chlorite, clay minerals). Other 
silicates (e.g., amphiboles, pyroxenes, palygorskite) only 
occur in minor or trace amounts. Quartz is the major 
mineralogical phase of mineral dust and generally 
contributes between approximately 10 and 60 wt.% to 
the mineralogical bulk composition. Feldspar minerals 
are only a minor component and rarely exceed 10 wt.%. 
The evaluation of a compiled data set from the literature 
reveals no correlation between quartz or feldspar 
abundance, the quartz/feldspar ratio or the 
plagioclase/K-feldspar ratio and specific source areas 
[43, 44]. Better suited for the assignment of (far-
travelled) mineral dust samples to specific potential 
source areas are the occurrence and abundance of 
chlorite, members of the illite, kaolin and smectite 
group, and palygorskite. The latter is a rarely observed 
magnesium aluminium phyllosilicate which is 
characteristic for source regions in north(west)ern Africa 
[60] and dusts transported to the Mediterranean region 
(e.g., [61]) and the Canary islands [62]. 

Depending on source sediment composition, and 
fractionation during entrainment and transport, the 
amount of clay-sized phyllosilicates in dust samples 
varies widely from minor amounts to significantly more 
than 50 wt.% (up to 87 wt.% (average) for western 
northern African dust samples [59]). Whereas smectite 
group, illite/smectite mixed layer minerals and 
pyrophyllite are with a few exceptions rare in mineral 
dust samples, the abundance and ratios of chlorite, 
kaolinite, and illite can be a sensitive tracer and 
compositional fingerprint of a source region [63]. For 
example, the ratio of illite to kaolinite (I/K ratio) is 
higher for dust samples originating in northwestern 
Africa (> 1.0) than in the sub-Saharan (Sahelian) region 
(< 0.5) [44, 59]. Concerning Asian dust, [64] reported 
elevated kaolinite abundances in Asian desert soil 
samples and hence significantly lower I/K (0.7 to 3.7) 
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and C/K ratios (0.3 to 1.1) compared to earlier reports 
(see compilation in [65]). 

Apart from the phyllosilicates, also the carbonate 
contents in mineral dust samples can be used as 
fingerprints of potential source areas. For example, in 
northern Africa dust samples enriched in carbonates 
(calcite and dolomite) are mainly uplifted in 
northwestern source areas (northern Algeria, Morocco), 
whereas in eastern Asia carbonate-rich dust samples 
mostly originate in more westerly source regions (e.g., 
Taklamakan Desert; [65]). 

Additional minerals that were detected by X-ray 
diffraction in mineral dust samples include Fe 
(hydr)oxides as magnetite, hematite or goethite, and salt 
minerals as gypsum or halite [44]. 

A very helpful tool for the understanding of the 
global distribution of the mineralogical composition of 
dust source sediments is the construction of world-wide 
mineralogical maps by [66]. 

The mineralogical composition of dust is strongly 
coupled to its chemical composition. Hence, most dust 
samples are characterized by elevated Si (and Al) 
contents with Si/Al ratios between 1 and 7 for northern 
African and eastern Asian dust samples [43]. High Si/Al 
ratios (> 3) are observed for example for dust samples 
from the largest single dust emission spot on earth, the 
Bodélé depression in Chad [59]. The compiled data set 
of [44] reveals that the elemental ratio (Ca+Mg)/Fe is a 
good indicator of dust provenance in northern Africa 
with values > 1 for dusts from the `northern belt´ (Atlas 
region, central Algeria, Libya, and Egypt) and values < 1 
for dusts from the sub-Saharan region (see also [59], 
their Figure 3). Other elements or elemental ratios do not 
show or only exhibit weak regional trends. TiO2 
concentrations are generally low (~ 1 wt.%). TiO2 is 
incorporated in Ti-dominated minerals as rutile and 
anatase or in FeTi oxides as ilmenite. Elevated K 
contents in Sahelian samples may be correlated with 
higher abundances of kaolin group minerals in this area 
but may also be due to an additional biomass-burning 
component. Dusts from the eastern Asian region are 
comparable in composition to dusts from northern 
Africa. In eastern Asia, an unequivocal trend with 
decreasing Ca/Al ratios from western (Taklamakan 
desert) to eastern source regions is observed which is 
again associated with the mineralogical composition 
([65], see above). 

As a final remark, it should be noted that in mineral 
dust the `nutrients´ Fe and P are at least partially 
structurally bound to phyllosilicates as illite, smectite, or 
chlorite (Fe) and apatite (P), respectively. This causes 
highly variable solubilities of these nutrients and hence 
bioavailabilities for marine and terrestrial ecosystems. 

2.3 Dust composition on the single particle 
scale 

For observations regarding aerosol, the single particle 
perspective can be of particular interest, as many 
properties may considerably differ on a particle-to-
particle scale. E.g., if an aerosol contains 20% quartz and 

80% clay minerals, it usually does not mean that every 
particle consists proportionally of the according 
materials. Usually, it does also not mean that there are 
20% quartz particles, but instead, there will most 
probably be a distribution of internally and externally 
mixed particles with different abundances.  

Different approaches have been used for measuring 
single particles, namely single particle mass 
spectrometry (e.g., ATOFMS = aerosol time-of-flight 
mass spectrometry [67]), optical and electron 
microscopy (including SEM = scanning electron 
microscopy and TEM = transmission electron 
microscopy), X-ray microscopy, etc., all of which have 
different strengths and weaknesses (see [68]). As 
electron microscopy appears to be the most wide spread 
approach, we will focus here on this technique (see also 
[43]). 

When particle composition is measured, commonly 
an image of the particle and sets of chemical and 
morphological information become available. After 
manual or automated analysis of the particles, data are 
often generalized by classifying particles according to 
their properties. However, to date there is no standard 
approach, so a comparison between different studies 
remains restricted by the use of different generalization 
techniques. 

Generally, individual-particle studies confirm the 
results of bulk analytical techniques such as X-ray 
diffraction of bulk samples. They reveal that mineral 
dusts mainly consists of Si-rich particles (e.g, quartz), 
different Al- and Si-rich particles (mainly phyllosilicates 
and feldspar minerals), and Ca- and CaMg-rich particles 
(calcite and dolomite, respectively) [42]. For example, in 
Eastern China  dust storm samples were reported to 
consist of 50-58% alumosilicates, of which around 45-
50% were clay minerals and amphiboles and 5% were 
feldspars, 5-10% quartz, 5-60% carbonates, 15% sulfate-
phosphate-(silicate) mixtures, and 3-5% iron-rich 
particles [50, 69]. A similar composition was found for 
Central China [70] with with 60-70% alumosilicates, 10-
20% carbonates, 2-7% iron-rich (the remainder 
consisting of Na, Cl, S, K), as well as in Western China 
(between Gobi and Taklamakan) with 45-57% 
phyllosilicates, 7-10% quartz, 5% feldspars, 15% 
amphiboles, 18-25% carbonates, 4% iron-rich, and 1% 
Ti-rich [50, 71]. It becomes obvious that other mineral 
classes apart from the silicates and carbonates as S-rich, 
Cl-rich, C-rich, Fe-rich, or Ti-rich particles are either 
low in abundance or are enriched owing on one side to 
external and internal mixing of mineral dust with 
particles of other sources (for example sea-salt, bio-mass 
burning; see below). On the other side, individual-
particle studies from eastern Asia observed that 
enrichment of S-, Cl- or P-rich particles can occur due to 
a primary source sediment derived origin [69, 72]. 

However, this classification of particles into distinct 
groups might hide the fact that there exist many particles 
with transient compositions. An evaluation of the 
chemical data with for example simple point plots in 
most cases don´t exhibit sharp boundaries between 
different classes but rather smeared point clouds [46, 
55]. This shows that mineralogical `end-member 
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particles´ are rather rare, and that most particles 
represent (complex) internal mixtures between different 
phases. For example, Fe-rich particles as hematite or 
goethite are mainly associated with alumosilicates [47, 
73, 74] and are often positioned at the surface of the 
particle with important consequences for the refractive 
index of these phase aggregates. 

In addition, external and internal mixing of mineral 
dust with other aerosol types (altered sea-salt, secondary 
aerosol, biomass-burning) occurs sometimes rather fast 
and is observed even in freshly emitted dusts (for 
northern African dust [55, 73], for Asian dust lower 
internal mixings are reported [71, 75]). On their way 
downwind and depending on ambient conditions such as 
the presence of different acid trace gases, the surface of 
mineral dust particles will be modified by the generation 
of coatings of C-, S-, N- or P-rich components, and 
therefore are reported frequently [76-84]. Also, mixtures 
of dust and biological material are found [85].  
Especially the carbonate particles may react partially or 
completely into new phases like calcium sulfate [50], 
calcium nitrate [35], or calcium chloride [86] during 
transport. Commonly, apart from an existing mixture 
already in source soils [72, 87], cloud processing is 
assumed to be the reason for the internal mixture, which 
is also reported for African dust [35, 88]. Less 
frequently, turbulent processes are assumed to mix the 
particle species [84, 89, 90]. While it is hypothesized 
that coagulation is less efficient than cloud processes 
[90], dust-laden airmasses are frequently transported 
under dry conditions. As a result, governing processes 
are most likely variable and depend on transport 
conditions [89-91]. For example, for particles originating 
in Africa after a cross-ocean long-range transport toward 
the Caribbean, only around 5-20% of mixtures were 
observed [89, 92, 93]. In contrast, commonly higher and 
highly variable numbers are reported for dust observed 
in coastal China and Japan [83, 84, 90, 91]. This 
difference corresponds to different transport patterns, dry 
transport in a layer aloft [94], versus potentially humid 
transport close to the ocean surface. 

2.3.1 Examples of Asian and African dust deposition 

The following section presents observations by the 
authors serving to illustrate the general findings above. 
Dust dry deposition was collected during the last years 
on a daily basis for periods ranging from one week to 
several years in different regions of the world. 
Deposition was collected with passive samplers on 
carbon adhesive and analyzed by scanning electron 
microscopy and X-ray fluorescence (for details refer to 
[89]). Measurements took place for African dust in 
Morocco near dust sources [95], at Cape Verde [55] and 
on Cyprus in boundary layer transport, at Tenerife, 
Canary Islands at the beginning of long-range transport 
[46], and on Barbados at the end of long-range transport 
[89]. Asian dust was sampled close to sources in 
Dushanbe, Tajikistan, in August 2016 and in Amakusa, 
Japan, in boundary layer transport. For contrasting the 

African and Asian desert samples, Artic dust was 
sampled on Svalbard in September 2017.  

In general, a tendency to downwind-fining can be 
observed, with the largest particles close to the sources 
(Morocco, Tadjikistan, Svalbard), whereas on the more 
distant sites the median diameters can be lower by half. 
No considerable change is observed over the long range 
transport from Tenerife to Barbados, which is related to 
the properties of the transport layer [96]. In all cases, 
quartz (mass) is quickly depleted from the aerosol, 
owing to its large particle size.  

The composition in long-range transport at Barbados 
is constant over time. With respect to clay minerals, it 
shows low illite/kaolinite and chlorite/kaolinie ratios. 
Similar low ratios are found for Cape Verde and 
Tenerife. This reflects the humid weathering conditions 
for the source soils, yielding a high abundance of 
kaolinite. Measurement close to the arid sources in 
Morocco exhibit much higher illite and lower kaolinite 
contents. Particle samples in Japan show similar ratios as 
in Morocco, pointing to similarly arid sources. Even 
lower kaolinite contributions are found for Dushanbe 
and the Arctic dust, emphasizing the absence of warm 
and humid chemical weathering. For the Arctic dust, 
high abundances of chlorite are detected. The Eastern 
Mediterranean samples finally show a variable 
composition with high as well as low illite/kaolinite 
ratios, owing to a variation in source regions. 

Carbonates are particularly abundant in Moroccan 
and Tajik measurements at an intermediate particle size 
(3-4 µm). While they are present as calcite and dolomite 
grains in Morocco, in Tajikistan they are frequently 
internally mixed with silicates, pointing to emission from 
evaporitic locations (e.g. dry lakebed). Interestingly, no 
gypsum formation is observed on these particles. At 
lower abundances, in Arctic dust carbonates are present 
as small particles (<2 µm). The more humid dust sources 
in comparison deliver much lower or no carbonates for 
African dust.  

While for the Western African outflow, commonly 
less than 5% of feldspar particles are identified (even 
though they are present in slightly larger abundances in 
Morocco), at Dushanbe and Japan around 10% and more 
are found, consistent with previous measurements [42]. 
Also the Arctic dust is similarly rich in feldspar particles, 
but here they are concentrated at larger sizes (>4 µm). 
Looking more into detail, Na-feldspars contribute the 
majority in Tajikistan, while in African dust Na- and K-
feldspars are equally abundant. 

Fe oxide/hydroxide particles are found for African 
dust in approximately doubled abundances from the 
more humid dust sources, in comparison to the more arid 
ones. A similar trend can be observed for the Fe content 
of the silicate grains. In Dushanbe, a population of 
(probably) chlorite with a high Fe and Mg content is 
identified, increasing considerably the dust total Fe 
content. 

Apart from the silicate, carbonate and oxide species, 
dust is internally and externally mixed at all places with 
different compounds, mainly different sulfates and sea 
salt. This mixture is moderately (Barbados) to highly 
(Cape Verde) variable for sea salt in the coastal sampling 
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locations, depending on meteorological conditions. For 
sulfate, the variability is higher for transported mineral 
dust than for source-near measurements in Morocco and 
Dushanbe. This indicates a source sulfate contribution 
for these more arid deserts, whereas this contribution is 
apparently masked by meteorological conditions and 
subsequent processing for the transported dust. 
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